
Heuristic search to the capacitated clustering

problem

Qing Zhou a, Una Benlic b, Qinghua Wu a,∗, Jin-Kao Hao c,d

aSchool of Management, Huazhong University of Science and Technology, No.

1037, Luoyu Road, Wuhan, China, email: qingzhou@hust.edu.cn;

qinghuawu1005@gmail.com

bSATALIA, 40 High Street, Islington High Street, London, United Kingdom, N1

8XB, email: una@satalia.com

cLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France,

email: jin-kao.hao@univ-angers.fr

dInstitut Universitaire de France, 1 rue Descartes, 75231 Paris, France

European Journal of Operational Research,
https://doi.org/10.1016/j.ejor.2018.08.043

Abstract

Given a weighted graph, the capacitated clustering problem (CCP) is to partition a
set of nodes into a given number of distinct clusters (or groups) with restricted ca-
pacities, while maximizing the sum of edge weights corresponding to two nodes from
the same cluster. CCP is an NP-hard problem with many relevant applications. This
paper proposes two effective algorithms for CCP: a Tabu Search (denoted as FITS)
that alternates between exploration in feasible and infeasible search space regions,
and a Memetic Algorithm (MA) that combines FITS with a dedicated cluster-based
crossover. Extensive computational results on five sets of 183 benchmark instances
from the literature indicate that the proposed FITS competes favorably with the
state-of-the-art algorithms. Additionally, an experimental comparison between FITS
and MA under an extended time limit demonstrates that further improvements in
terms of the solution quality can be achieved with MA in most cases. We also an-
alyze several essential components of the proposed algorithms to understand their
importance to the success of these approaches.

Keywords: Tabu search; memetic algorithm; infeasible local search; capacitated
clustering.
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1 Introduction

Given a weighted graph G = (V,E) where V is a set of n nodes and E is a set
of edges, let wi ≥ 0 be the weight of node i ∈ V and let cij ({i, j} ∈ E) be the
edge weight between nodes i and j (cij = 0, if {i, j} /∈ E). The Capacitated
Clustering Problem (CCP) is to partition V into a given number p (p ≤ n) of
disjoint clusters or groups such that the sum of node weights in each cluster is
constrained by an upper and a lower capacity limit, while maximizing the sum
of edge weights whose two associated endpoints belong to the same cluster.

Formally, let the binary variable Xig take the value 1 if node i is assigned to
group g (g ∈ {1, 2, ..., p}), and 0 otherwise. CCP can then be expressed as the
following quadratic program [7,10]:

maximize
p

∑

g=1

n−1
∑

i=1

n
∑

j=i+1

cijXigXjg (1)

subject to
p

∑

g=1

Xig = 1, ∀i ∈ V (2)

Lg ≤
n
∑

i=1

wiXig ≤ Ug, ∀g ∈ {1, 2, ..., p} (3)

Xig ∈ {0, 1}, ∀i ∈ V, g ∈ {1, 2, ..., p} (4)

Constraint (2) guarantees that every node is assigned to exactly one cluster,
while constraint (3) ensures that the minimum capacity (Lg) and the maxi-
mum capacity (Ug) requirements of each cluster are satisfied.

Note that CCP is closely related to the Graph Partitioning Problem (GPP)
[4,5,16] where the lower and the upper capacity limits of the clusters are
respectively set to 0 and a predetermined imbalance parameter. Moreover,
the Maximally Diverse Grouping Problem (MDGP) [6,17,22,25,34,37,38] is a
special case of CCP, when G is a complete graph with unit cost node weights.
Consequently, CCP is an NP-hard problem as MDGP is known to be NP-
hard. Furthermore, CCP is equivalent to the Handover Minimization Problem
(HMP) in mobility networks [29] where the objective is to minimize the sum
of weights of the edges with endpoints in different clusters. In addition to
its application in mobility networks, CCP arises in several different contexts
including mail delivery [2], VLSI design [38] and vehicle routing [14,23].

Since it was first defined in 1984 by Mulvey and Beck [33], a variety of solution
approaches have been proposed for CCP given its practical importance and
NP-hard nature. State-of-the-art approaches include a Greedy Randomized
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Adaptive Search Procedure with Path Relinking (GRASP-PR) by Deng and
Bard [10]. In 2013, Morán-Mirabal et al. [31] proposed three algorithms for
the equivalent handover minimization problem: a GRASP with path-relinking
(denoted as GQAP in the corresponding paper), a GRASP with evolutionary
path-relinking (GevPR-HMP) and a population-based biased random-key ge-
netic algorithm (BRKGA). According to their computational results, GevPR-
HMP exhibits the best performance among those three algorithms. In 2015,
Mart́ınez-Gavara et al. [29] presented several approaches which may be con-
sidered as state-of-the-art methods for CCP, including a Greedy Randomized
Adaptive Search Procedure (GRASP), a Tabu Search method (TS), a hybrid
method combining GRASP with TS (GRASP+TS), and a Tabu Search with
Strategic Oscillation (TS SO). In 2016, Lai and Hao [24] proposed a highly
effective Iterated Variable Neighborhood Search (IVNS) for CCP. More re-
cently, Mart́ınez-Gavara et al. [30] applied several methods to CCP including
a GRASP algorithm (denoted as GRASP2-1) and an Iterated Greedy (IG)
algorithm, while Brimberg et al. [7] presented two highly effective VNS-based
heuristics denoted as GVNS and SGVNS. A comprehensive review on the most
representative approaches for CCP prior to 2011 can be found in [10].

CCP is a constrained problem that imposes a lower and an upper capacity
limit to the size of the clusters. One notices that most of the existing ap-
proaches for CCP restrict their search to the feasible region only, while only
few approaches including GRASP-PR [10], GevPR-HMP [31], GQAP [31],
and TS SO [29] are allowed to visit infeasible solutions. In this work, we are
interested in search algorithms that examine both the feasible and the infea-
sible space in search of improved solutions. For this purpose, we introduce a
highly effective tabu search (denoted as FITS) that alternates between feasi-
ble and infeasible regions, bringing more flexibility into the search process. In
addition, we propose the first population-based memetic algorithm (MA) for
CCP. It uses FITS as the local optimization mechanism, and incorporates a
dedicated cluster-based crossover to transfer pertinent properties (“building
blocks”) from parents to offspring. Experimental results on five sets of 183
benchmark instances indicate a highly competitive performance of FITS with
respect to the existing state-of-the-art algorithms. Given a longer time limit, a
computational comparison between FITS and MA reveals that MA is able to
further improve on the performance of its underlying FITS in terms of solution
quality.

The remainder of the paper is organized as follows. Section 2 presents FITS,
followed by a detailed description of the proposed memetic approach in Section
3. Experimental results on a widely-used benchmark are provided in Section
4. Section 5 analyzes the contribution of the key algorithmic ingredient to the
performance of the proposed algorithms. Furthermore, we motivate the choice
for the crossover used by MA, prior to conclusions drawn in the last section.
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2 Feasible and infeasible exploration with tabu search

2.1 Main framework

Algorithm 1 Main scheme of FITS
Require: Graph G = (V,E)
Ensure: Best found solution S∗

1: S ← InitialSolution(G) /*Section 2.2*/
2: Initialize tabu list

3: S∗ ← S /*S is a feasible solution*/
4: while stopping condition is not verified do

5: /*feasible local search phase*/
6: (S, Slocal best)← feasible local search(S) /*Section 2.3*/
7: if f(Slocal best) > f(S∗) then
8: S∗ ← Slocal best

9: end if

10: /*infeasible local search phase*/
11: (S, Slocal best)← infeasible local search(S) /*Section 2.4*/
12: if f(Slocal best) > f(S∗) then
13: S∗ ← Slocal best

14: end if

15: end while

Instead of confining the search process to feasible regions, a number of studies
on highly constrained problems [9,12,21,26,35] have shown that the consider-
ation of infeasible solutions during the search may help to better explore the
search space. Based on this observation, the proposed tabu search alternates
between a feasible local search phase (FLS for short) that only examines fea-
sible solutions, and an infeasible local search phase (InfLS for short) where
the capacity constraint is relaxed in a controlled manner. The two phases play
different roles in the search process - FLS ensures an intensified exploitation in
a relevant search region, while InfLS is used to introduce more freedom (diver-
sification) into the search. By alternating between these two complementary
phases, FITS is expected to explore various zones of the search space without
being easily trapped in a local optimum.

Algorithm 1 summarizes the general framework of FITS. Starting from a feasi-
ble solution generated with a construction procedure (Section 2.2), FITS first
enters the FLS phase that is based on the best-improvement strategy with a
joint use of three types of move operators (Section 2.3.2). This phase termi-
nates as soon as the search is deemed to be trapped in a deep local optimum,
i.e., if the best found solution cannot be improved for Ncons consecutive iter-
ations. The algorithm then switches to InfLS that relies on a penalty-based
evaluation function to guide the search to move towards new search regions.
The stopping condition is typically a time limit or a fixed number of iterations.
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2.2 Initial solution

The starting point for the search is a feasible solution generated by means of
two randomized construction methods similar to those used in [17,24]. The
first method consists in two stages, where the first stage performs the fol-
lowing steps: (i) randomly select a node v from the set of unassigned nodes,
and randomly choose a cluster g from the set of clusters whose lower ca-
pacity constraint is not satisfied; (ii) allocate v to cluster g. The two steps
are repeated until all clusters satisfy the lower capacity constraint. Once the
first stage is completed, the proposed construction method enters the second
stage that: (i) randomly picks an unassigned node v and a cluster g such that
size[g] + wv <= Ug, where size[g] and wv represent respectively the current
weight of cluster g and the weight of node v; (ii) assign v to g. The second
stage of this procedure terminates as soon as all the nodes have been assigned.

As observed in our preliminary experiments, the above described method often
fails to find a feasible assignment of all the nodes when the upper capacity limit
of clusters is very tight. Consequently, we propose the second construction
method which constitutes a slight modification of the first method. Instead of
randomly choosing a node v in both stages of the first construction method,
an unassigned node v is selected such that v has the largest weight (ties broken
randomly). The other steps are kept unchanged.

The time complexity of the construction method is O(n ∗ p).

2.3 Feasible local search (FLS)

FLS searches for the most promising solutions in the feasible space of can-
didate solutions, thus ensuring that the capacity constraint is verified. It is
based on the general tabu search framework [18] and a combined use of three
complementary move operators as described in the following subsections.

2.3.1 Feasible search space and evaluation function

A candidate solution to CCP is any partition of the node set V into p subsets
C1, C2,..., Cp, also called clusters. The search space, including both feasible
and infeasible solutions, is then formally defined as:

Ω = {{C1, C2, ..., Cp} : ∪
p
i=1Ci = V, Ci ∩ Cj = ∅} (5)

where i 6= j, 1 ≤ i, j ≤ p. Notice that an infeasible solution may contain one
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or more empty clusters.

The feasible search space includes the set of all the candidate solutions Ωf ⊂ Ω
satisfying the capacity constraints:

Ωf = {{C1, C2, ..., Cp} : Li ≤ |Ci| ≤ Ui, ∪
p
i=1Ci = V, Ci ∩ Cj = ∅} (6)

where i 6= j, 1 ≤ i, j ≤ p and |Ci| represents the total weight of the nodes in
cluster i (i.e., |Ci| =

∑

u∈Ci
wu).

To evaluate the quality of each candidate solution s = {C1, C2, ..., Cp} in Ωf ,
the evaluation function is equivalent to the objective function which sums up
the edge weights associated to endpoints in the same cluster:

f(s) =
p

∑

g=1

∑

i,j∈Cg ,i<j

cij (7)

2.3.2 Neighborhood Structures

As previously mentioned, the neighborhood exploited by FLS is defined by a
joint use of three basic move operators, which have previously been employed
in [7,10,24,29,30]. These operators are briefly described as follows:

OneMove operator: Given a solution s = {C1, C2, ..., Cp}, OneMove trans-
fers a node v from its original cluster i to another cluster j such that the
capacity constraint is respected, i.e., |Ci| − wv ≥ Li and |Cj| + wv ≤ Uj. To
rapidly evaluate the gain value for each candidate move, our algorithm employs
a fast incremental evaluation technique similar to that used in [6,24,34,37]. The
main idea is to maintain an incremental matrix γ, where each element γ[v][g]
represents the sum of the edge weights between v and other nodes located in
cluster g of the current solution, i.e., γ[v][g] =

∑

u∈Cg
cuv. Let OneMove(v, i, j)

denote a move that consists in transferring a node v from cluster i to cluster
j, the corresponding gain value can be conveniently calculated as:

∆f (OneMove(v, i, j)) = γ[v][j]− γ[v][i]

After each OneMove operation, a subset of values in γ affected by the move
is updated as follows: γ[u][i] = γ[u][i] − cuv, γ[u][j] = γ[u][j] + cuv, ∀u ∈ V .
The complexity to update γ after a OneMove operation is O(n).
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SwapMove operator : This move operator swaps two nodes v and u from
two different clusters i and j, such that the capacity constraint is maintained.
Let SwapMove(v, u) denote a swap move, the associated move gain can be
efficiently obtained as:

∆f (SwapMove(v, u)) = (γ[v][j]− γ[v][i]) + (γ[u][i]− γ[u][j])− 2cvu

Since a SwapMove can be decomposed into two consecutive OneMove oper-
ations, γ is updated in two steps as for the corresponding OneMove moves.
Clearly, updating γ after a SwapMove operation can also be achieved in O(n)
time.

2-1 Exchange operator: Let v, u and z be three nodes where v and u are
located in the same cluster i, while z belongs to another cluster j. The 2-1
Exchange transfers v and u from cluster i to cluster j and simultaneously
moves z from j to i, while respecting the capacity restriction of i and j.
Let Exchange(v, u, z) denote such a move, the resulting move gain can be
computed as:

∆f (Exchange(v, u, z)) = (γ[v][j] − γ[v][i]) + (γ[u][j] − γ[u][i]) + (γ[z][i] −
γ[z][j]) + 2(cvu − cvz − cuz)

Since a 2-1 Exchangemove can be decomposed into three consecutiveOneMove
operations, the matrix γ is consecutively updated three times according to the
corresponding OneMove moves.

2.3.3 Exploration of the feasible search space

The general scheme of FLS is summarized in Algorithm 2. Starting from a fea-
sible solution, FLS selects at each iteration the best non-prohibited move (i.e.,
non-tabu move of the highest gain) from the union of OneMove, SwapMove
and 2-1 Exchange moves, where ties are broken at random. Obviously, such
a combined neighborhood ensures an intensified examination of the feasible
search space, and thus enhances the capacity of finding improved feasible so-
lutions. To avoid short-term cycling, each time a node v is moved from its
original cluster C, it is forbidden to move v back to C for the next tt it-
erations (tt is called the tabu tenure). Along with this rule, an aspiration
criterion is applied to allow a move, regardless of its tabu status, if it leads to
an improved best found solution. The exploration of the feasible search space
terminates if no improvement is achieved in the consecutive Ncons iterations
(Ncons is called the search depth). At this stage, the algorithm switches to the
Infeasible Local Search (InfLS) phase that introduces a greater diversity, as
the search is deemed to be trapped in a deep local optimum.
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Aside from the diversification incurred during InfLS, FLS additionally incor-
porates a shake procedure similar to that used in [24]. The shake procedure
is applied periodically, and consists in performing a random move from the
combined feasible OneMove and SwapMove neighborhoods. This operation
is repeated η times, where η is the shake strength.

2.4 Infeasible local search (InfLS)

The basic idea of InfLS is to relax the capacity constraint so as to allow the
algorithm to visit some intermediate infeasible solutions. In this way, a larger
number of moves become available, enabling transitions between structurally
different high-quality feasible solutions.

Algorithm 2 Feasible Local Search

Require: Initial solution s
Ensure: Final solution s, best solution slocal best found during this phase
1: slocal best ← s
2: NI ← 0 /*number of consecutive iterations without improvement of

slocal best*/
3: Iter1← 0 /*iteration counter*/
4: Initialize tabu list
5: while NI < Ncons do
6: Choose the best allowed move m ∈ {OneMove ∪ SwapMove ∪ 2-1

Exchange}
7: s← s⊕m /*Perform the best move*/
8: Update tabu list
9: if f(s) > f(slocal best) then
10: slocal best ← s
11: NI ← 0
12: else
13: NI ← NI + 1
14: end if
15: if (Iter1 + 1)%δ==0 then
16: Shake()
17: end if
18: Iter1← Iter1 + 1
19: end while
20: return (s, slocal best)
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Algorithm 3 Infeasible Local Search (InfLS)

Require: Feasible solution s returned by FLS
Ensure: Best feasible solution found during InfLS slocal best, final feasible so-

lution sfinal
1: stmp ← s /*stmp is a duplicate of the starting feasible solution s*/
2: flag fs ← false /*flag fs is a boolean variable that indicates whether

a feasible solution was encountered during InfLS*/
3: slocal best ← s
4: penalty count← 0
5: penalty factor ← 2
6: MI ← 0
7: Initialize tabu list
8: while MI ≤M do
9: Choose the best allowed move m ∈ {OneMove ∪ SwapMove ∪ 2-1

Exchange}
10: s← s⊕m /*Perform the best move*/
11: Update tabu list
12: if s is a feasible solution then
13: if f(s) > f(slocal best) then
14: slocal best ← s
15: end if
16: else
17: penalty count← penalty count+ 1
18: end if
19: MI ←MI + 1
20: if (MI + 1)%λ==0 then
21: if penalty count > µ1 then
22: penalty factor ← penalty factor ∗ τ
23: else if penalty count < µ2 then
24: penalty factor ← penalty factor/τ
25: end if
26: penalty count← 0
27: end if
28: if s is a feasible solution then
29: sfinal ← s
30: flag fs← true
31: end if
32: end while
33: if flag fs == false then
34: stmp ← Shake() /*apply the shake procedure to stmp, Section 2.3.3*/
35: sfinal ← stmp

36: end if
37: return (sfinal,slocal best)

2.4.1 Evaluation function and neighborhood structures

To evaluate the quality of a solution s ∈ Ω during InfLS, we employ a penalty-
based evaluation function fp which is a linear combination of the basic eval-
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uation function f (Equation. 7) and a penalty function associated with the
degree of solution infeasibility:

fp(s) =
p

∑

g=1

∑

i,j∈Cg ,i<j

cij − β × EX(s) (8)

where β is a self-adjustment penalty parameter that controls the degree of in-
feasibility introduced into the search. EX(s) is the total degree of infeasibility
of s defined as EX(s) =

∑p
g=1 og, where

og =















Lg − |Cg|, if |Cg| < Lg

|Cg| − Ug, if |Cg| > Ug

0, otherwise

(9)

The InfLS phase employs the same three basic move operators (OneMove,
SwapMove and 2-1 Exchange) defined in Section 2.3.2, but without any
capacity restriction. We further use a fast incremental evaluation technique
to effectively calculate the move gain that corresponds to the change in the
penalty-based evaluation function fp. Specifically, for a given move denoted
as mv (mv = OneMove, SwapMove or 2-1 Exchange), the move gain of mv
can be defined as ∆f (mv) = ∆f (mv) − β ×∆EX(mv). In addition to the in-
cremental matrix γ (see Section 2.3.2), another vector ω is maintained where
each element ωg represents the total weight of nodes contained in cluster g.
Since all moves induced by OneMove, SwapMove and 2-1 Exchange opera-
tors only involve two clusters, the weight of these two clusters after each move
can be directly calculated by adding or subtracting the weight of the added
or removed nodes. Furthermore, the move gain associated to this change can
easily be updated as described in Equation. 9. The complexity of the above
gain update procedure is O(1).

2.4.2 Exploration with InfLS

While both InfLS and FLS rely on the tabu search strategy, the main difference
between these procedures lies in the previously described evaluation functions.
The main scheme of InfLS is summarized in Algorithm 3.

During the search process, the variable β of the evaluation function (see Equa-
tion. (8)) is periodically updated depending on the penalty counter (penalty count)
which records the number of times a feasible solution has been found during
λ consecutive iterations (λ is a parameter). Recall that β controls the degree
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of infeasibility introduced into the search. More precisely, β is increased by a
multiple of τ if penalty count > µ1, and is divided by τ if penalty count < µ2

(τ , µ1 and µ2 are parameters). Furthermore, the best found feasible solution
slocal best is updated with the current solution s if an improved feasible solu-
tion has been found. InfLS terminates after M iterations (M is a parameter),
followed by the FLS phase. The starting point for the next round of the FLS
search is the most recently encountered feasible solution sfinal returned by
InfLS.

Finally, if no feasible solution is found during the InfLS process, the starting
feasible solution s returned by FLS is perturbed with the shake procedure
(Section 2.3.3) and is then returned as the output of InfLS. Note that the
shake procedure explores feasible solutions only thus resulting in a feasible
solution. Algorithm 3 summarizes the general procedure of the InfLS phase,
in which we use a boolean variable flag fs to indicate whether a feasible
solution is encountered during the InfLS phase. It is important to mention
that FLS and InfLS use two separate tabu lists, which are critical to the
performance of the two local search phases as they prevent the search from
short-term cycling. When switching back to FLS, the tabu list is re-initialized
before entering the main loop.

3 Memetic algorithm

Algorithm 4 Main scheme of MA

Require: Graph G = (V,E)
Ensure: Best solution S∗ found so far
1: Initialize population P = {S1, S2, ..., S|P |}
2: S∗ ← Best(P )
3: while Time does not exceed tmax do
4: Randomly select two parent solutions Si ∈ P and Sj ∈ P
5: Sc ← Crossover(Si, Sj) /*Section 3.1*/
6: Sc ← FITS (Sc) /*Section 2.1*/
7: if f(Sc) > f(S∗) then
8: S∗ ← Sc

9: end if
10: POP ← Pool Updating(Sc, P ) /*Section 3.2 */
11: end while

Relying on the combined exploitation power of local optimization and explo-
ration capacity of population-based search, Memetic Algorithm (MA) [32] is
an effective hybrid framework for tackling a variety of difficult combinatorial
problems.

The main scheme of our MA for CCP is given in Algorithm 4. The algo-
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rithm consists of four basic components: a population initializing procedure,
a crossover operator, the FITS procedure for local improvement and a pop-
ulation updating rule. Each solution from the initial population is obtained
with the two randomized construction methods described in Section 2.2, and
then further improved with our FITS method presented in Section 2. At each
cycle (generation) of MA, two parent solutions are randomly selected from the
population, and then recombined by means of the crossover operator to gen-
erate an offspring solution (Section 3.1). This new offspring is then improved
by applying a fixed number of iterations of our FITS algorithm (Section 2.1).
Finally, the population updating rule decides whether the improved offspring
should be inserted into the population and which existing solution should be
replaced (Section 3.2). This process is repeated until a predefined stopping
condition (usually a fixed number of generations or time limit) is reached.

3.1 Cluster-based crossover

Algorithm 5 Cluster-based crossover

Require: Two randomly selected parents s1 = {C1
1 , C

1
2 , ..., C

1
p}, s

2 =
{C2

1 , C
2
2 , ..., C

2
p}

Ensure: Offspring so = {Co
1 , C

o
2 , ..., C

o
p}

1: l ← 1
2: while l ≤ p do
3: if l%2 == 0 then
4: Select a cluster C∗ ∈ s1 with the maximum sum of edge weights
5: Co

l ← C∗

6: else
7: Select a cluster C∗ ∈ s2 with the maximum sum of edge weights
8: Co

l ← C∗

9: end if
10: Remove the subset Co

l of nodes from s1 and s2

11: l← l + 1
12: end while
13: Assign in a greedy manner the unassigned nodes V −{Co

1 ∪C
o
2 ∪ ...∪C

o
p}

Crossover operator is one of the key elements of a population-based algorithm.
It is well-known that a crossover’s efficiency on a given optimization problem
crucially depends on its ability to preserve pertinent properties (“building
blocks”) from parents to offspring [19]. In the context of CCP, a building
block may be defined as a cluster (i.e., group or subset of a graph partition),
where the aim is to maximize the sum of edge weights whose two associ-
ated endpoints belong to the given cluster. As CCP can be classified as a
grouping problem [13], it is more natural and straightforward to manipulate
groups of objects (i.e., clusters) rather than individual objects. Furthermore,
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an analysis on a sample of locally optimal CCP solutions (see Section 5.3.1)
discloses a high percentage of nodes that are always grouped together across
high quality solutions, which provides a strong motivation for preserving the
grouped nodes (i.e., cluster) from parent individuals to offspring solution. The
proposed cluster-based crossover (CBX) is further inspired by the Greedy Par-
tition Crossover (GPX) used for the classic graph coloring problem [15].

Given two parent solutions, CBX generates an offspring so = {Co
1 , C

o
2 , ..., C

o
p}

in two sequential stages as summarized in Algorithm 5. The first stage per-
forms p iterations (i.e., one iteration per cluster), where each iteration l con-
sists in selecting a cluster C∗ from a reference parent such that the weighted
sum of edges with both endpoints in C∗ is maximized. Cluster C∗ then be-
comes the lth building block of so, followed by the removal of all the nodes
contained in C∗ from both parent individuals. The reference parent is selected
between s1 and s2 in an alternating manner. Note that the first crossover stage
may result in a partial solution as some nodes may have been left unassigned.
The second stage of the crossover process is a greedy construction method
that consists in selecting an unassigned node v and inserting it into cluster g
of the offspring solution, such that Lg ≤ wv + |C

o
g | ≤ Ug while maximizing the

objective function value defined in Equation. 7. This process is repeated until
all the nodes are assigned.

3.2 Population updating strategy

Population update strategy is another key element of a MA algorithm whose
main role is to maintain a healthily diversified population throughout the
search. To avoid premature convergence, we employ a quality-and-distance
pool updating strategy which takes into account both the solution quality
and the distance between individuals in the population to decide whether
a new offspring should be introduced into the population. For this purpose,
the distance Dist(Sa, Sb) between two solutions Sa and Sb is defined as the
minimum number of one-move steps required to transform Sb to Sa [28]. Given
a population P = {S1, S2, ..., S|P |}, the distance between a solution Si (i ∈
1, 2, ..., |P |) and P is computed as:

DSi,P = min{Dist(Si, Sj)|Sj ∈ P, Sj 6= Si} (10)

The main scheme of the population update procedure, which is similar to that
used in [28,39], is provided in Algorithm 6.

First, offspring S0 is tentatively added to P resulting in P ′ = P
⋃

{S0}. The
quality-and-distance score function R is then applied to rank each solution
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Si ∈ P ′:

R(Si, P
′) = αX (f(Si)) + (1− α)X (DSi,P ′) (11)

where α is a parameter set to 0.6 according to [28], and f(Si) is the objective
value of Si. X (.) is a function defined as:
X (y) = y−ymin

ymax−ymin+1

where ymax and ymin are the maximum and the minimum possible values of y
respectively. Finally, the solution Sw with the smallest score is removed from
the population to make space for offspring S0.

4 Computational experiments

This section provides an extensive assessment of the proposed algorithms on
a well-known set of 133 benchmark instances from CCPLIB, as well as on
two new groups of 50 large instances recently generated in [7]. To evaluate the
effectiveness of the proposed approaches, we perform comparisons with several
state-of-the-art algorithms from the literature. For the ease of reading and for
the sake of clarity, Table 1 shows the list of the proposed and the reference
algorithms from the CCP literature.

Algorithm 6 Population update strategy

Require: Offspring S0, population P =
{

S1, S2, ..., S|P |

}

Ensure: Updated population P =
{

S1, S2, ..., S|P |

}

1: Tentatively add S0 to P : P ′ = P
⋃

{S0}
2: for i = 0, 1, ..., |P | do
3: Calculate the distance between Si and P ′ according to Eq.(10)
4: Calculate the goodness score R(Si, P

′) of Si according to Eq.(11)
5: end for
6: Identify the solution Sw with the smallest goodness score in P ′ : Sw =

min {R(Si, P
′)|i = 0, ..., |P |}

7: if Sw 6= S0 then
8: Replace Sw with S0: P = P

⋃

{S0} \ {Sw}
9: end if
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4.1 Benchmark instances

The instances from CCPLIB 1 can be grouped into three sets:

• DB (10 instances): This set was introduced by Deng and Bard [10] for
the Maximally Diverse Grouping Problem (MDGP), and adapted for CCP
in [29] by generating node weights with a uniform distribution in the range
[0, 10]. These instances are characterized by n = 82, p = 8, Lg = 25, Ug = 75.
• RanReal (40 instances): This set was originally proposed in [17] and first
adapted for CCP in [29] by generating node weights with a uniform dis-
tribution in the range [0, 10]. It includes 20 instances with n = 240, p =
12, Lg = 75, Ug = 125, and another 20 instances with n = 480, p = 20, Lg =
100, Ug = 150. The edge weights are real numbers randomly generated in
the range [0, 100].
• MM (83 instances): This set was introduced by Morán-Mirabal et al. [31]
with n ∈ {20, 30, 40, 100, 200, 400} and p ∈ {5, 10, 15, 25, 50}. The edge
weights are real numbers, while Lg and Ug are respectively set to 0 and a
real number that differs for each instance. The set is widely used in the
literature for the handover minimization problem.

Additionally, we perform experiments on the following two groups of 50 large
instances 2 from [7]:

• RanReal960 (30 instances): This set consists of 3 subsets. Each subset con-
tains 10 instances characterized as follows:
· n = 960, p = 30, Lg = 120, Ug = 180;
· n = 960, p = 40, Lg = 90, Ug = 135;
· n = 960, p = 60, Lg = 60, Ug = 90;
• MDG (20 instances): This set includes 20 instances with n = 2000, p =
50, Lg = 200, Ug = 300. The edge weights and the node weights are gener-
ated using the same method as in [11].

4.2 Experimental protocol

The proposed FITS algorithm requires eight parameters: tabu tenure (tt),
search depth of FLS (Ncons), shake frequency (δ) and shake strength (η) of
FLS, update frequency (λ) of the self-adjustment penalty β in InfLS, update
coefficients of β (τ , µ1, µ2) in InfLS, and the maximum number of InfLS
iterations (M). MA requires two additional parameters: the population size
(|P |) and the number of FITS iterations (Iter). To determine the appropriate

1 http://www.optsicom.es/ccp/
2 http://www.mi.sanu.ac.rs/~nenad/ccp/
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Table 1
List of the reference algorithms for CCP and its equivalent HMP.

Algorithm
name

Reference Search strategy

FITS - A tabu search alternating between exploration in feasible and infeasible search space

MA - A memetic algorithm that extends FITS with a dedicated cluster-based crossover
operator

GRASP-PR [10](2011) A reactive GRASP

GevPR-HMP [31](2013) A GRASP combined with an evolutionary path-relinking algorithm in which a repair
procedure is applied to achieve feasibility

GQAP [31](2013) A GRASP method with a new variant of path-relinking dealing with infeasibilities

BRKGA [31](2013) A biased random-key genetic algorithm using a parameterized uniform crossover

GRASP [29](2015) A simplified GRASP

TS [29](2015) A tabu search algorithm exploiting the 2-1 exchange neighborhood

GRASP+TS [29](2015) A hybrid combining GRASP with tabu search

TS SO [29](2015) A tabu search with strategic oscillation that considers infeasible solutions

IVNS [24](2016) An iterated variable neighborhood search combining an extended variable neighbor-
hood descent with a randomized shake procedure

GRASP2-1 [30](2017) A new GRASP method in which the improvement procedure performs 2-1 exchanges

IG [30](2017) An iterated greedy method alternating between destructive and constructive phases

IG-GRASP [30](2017) A hybrid between GRASP2-1 and iterated greedy method

GVNS [7](2017) A general variable neighborhood search that follows the standard VNS approach
including more levels of shaking

SGVNS [7](2017) A skewed general variable neighborhood search that allows moves to inferior solutions

Table 2
Settings of the parameters.

Parameter Section Description Considered values Final
value

Ncons 2.3 search depth of each FLS phase {500, 700, 1000, 1500, 2000} 1000

M 2.4 maximum number of iterations of each
InfLS phase

{100, 150, 200, 250, 300} 200

tt 2.3,2.4 tabu tenure {5, 7, 10, 12, 15} 10

δ 2.3 frequency of shake {300, 400, 500, 600, 700} 500

η 2.3 shake strength {0.06*n, 0.08*n, 0.10*n, 0.12*n,
0.14*n}

0.10*n

Iter 3 number of iterations of FITS in MA {5000, 8000, 10000, 12000, 15000} 10000

|P | 3 size of population {5, 7, 10, 13, 15} 5

λ 2.4 update frequency of β in InfLS - 5

τ 2.4 update coefficients of β in InfLS - 2

µ1 2.4 update coefficients of β in InfLS - 4

µ2 2.4 update coefficients of β in InfLS - 1

parameter settings for FITS and MA, we run the Iterated F-race (IFR) method
[3], implemented within the IRACE package [27], on a selection of 20 RanReal
instances with n = 240 and n = 480. The tuning budgets of FITS and MA
are set to 500 runs with the time limit of 1.0 ∗ n seconds for each run. Table
2 shows the tested and the final values obtained in the tuning process. For λ,
τ µ1 and µ2, we simply adopt the values recommended in [9,20].

The proposed algorithms are coded in C++, compiled with the g++ compiler
using option “-O3”, and executed on an Intel E5-2670 processor (2.8GHz) with
2GB RAM running under Linux. For time scaling purposes, the execution time
of the DIMACS machine benchmark 3 on our system is 0.19s for graph r300.5,
1.17s for graph r400.5 and 4.54s for graph r500.5.

3 ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 3
Statistical results for FITS and six state-of-the-art algorithms on two sets of CCP
instances: DB and RanReal. The best performance is indicated in bold.

Instance
set

GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

DB &
RanReal

#Best/Avg. 8/2 4/0 9/2 14/10 10/10 32/40 29/20

p-valuebest/p-
valueavg

7.75e-
11/1.54e-
12

7.75e-
11/1.54e-
12

2.86e-
9/1.54e-10

1.25e-
7/7.70e-
8

1.87e-
9/2.54e-
10

0.88/0.02

Average
Devbest/Devavg(%)

6.66/7.56 1.33/2.42 1.35/2.00 0.26/0.40 0.22/0.63 0.20/0.36 0.19/0.33

AvgTime(s) 149.25 50.68 187.26 224.24 243.04 187.33 201.35

4.3 Comparison between FITS and the state-of-the-art algorithms on the gen-
eral CCP instances

To evaluate the performance of FITS on the first two sets of instances (DB
and RanReal), we provide comparisons with several state-of-the-art algorithms
including GRASP [29], TS [29], GRASP+TS [29], IVNS [24], GVNS [7] and
SGVNS [7]. For a fair comparison with these state-of-the-art algorithms, we
use their corresponding source codes and run them on our computing platform
under the same computing conditions as described in Section 4.2. GRASP,
TS, GRASP+TS, IVNS were previously re-implemented by Lai et al. [24]
and their source codes are available at http://www.info.univ-angers.fr/
pub/hao/ccp.html. The source codes of GVNS and SGVNS were shared by
the corresponding author and are available at http://www.mi.sanu.ac.rs/

~nenad/ccp/. All the codes were compiled using g++ compiler with the ‘-O3’
option. For all the algorithms in this experiment, the stopping condition is a
fixed cutoff time limit tmax set to 1.0 ∗ n seconds, where n is the number of
nodes in the given graph. Due to the stochastic nature of the algorithms, we
perform 20 independent runs of each algorithm per instance.

Table 3 summarizes the statistical results for each algorithm on the instances
of the DB and RanReal sets. Row ‘#Best/Avg.’ indicates the number of cases
that each algorithm outperforms the remaining approaches in terms of the
best and the average objective value. The average percent deviation of the
best/average result from the best solution obtained within this experiment is
provided in row ‘Average Devbest/Devavg’, while the average computing time
(in seconds) required by each algorithm to reach its final objective value is
provided in row ‘AvgTime’. For each instance, we calculate the best and the
average deviation (Devbest and Devavg) as (f

∗ − f)/f ∗ × 100, where f is the
best or the average result and f ∗ is the best solution obtained with all the
compared algorithms. Finally, to determine whether there exists a statistically
significant difference in performance between FITS and the six reference al-
gorithms, row ‘p-valuebest/p-valueavg’ provides the p-values obtained with the
pairwise Wilcoxon statistical test on the best/average results. Detailed results
on the DB and the RanReal benchmarks are given in the Appendix (Tables
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Table 4
Statistical results of FITS and six state-of-the-art algorithms on two large instance
sets: RanReal960 and MDG. The best performance is given in bold.

Instance
set

GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

RanReal960
& MDG

#Best/Avg. 0/0 0/0 0/0 0/0 0/0 46/46 4/4

p-valuebest/p-
valueavg

1.54e-
12/1.54e-
12

1.54e-
12/1.54e-
12

1.54e-
12/1.54e-
12

1.14e-
11/1.54e-
12

0.09/0.16 2.86e-
9/2.86e-
9

Average
Devbest/Devavg(%)

16.94/17.44 6.60/7.36 3.77/4.47 1.27/1.70 0.61/0.80 0.01/0.61 0.89/1.07

AvgTime(s) 694.09 1115.02 1221.46 1251.36 1202.49 1240.53 1282.67

11, 12).

From Table 3, we observe that GRASP, TS, GRASP+TS, IVNS, GVNS,
SGVNS and FITS respectively outperform the other algorithms on 8, 4, 9,
14, 10, 32 and 29 instances in terms of the best objective value. In terms of
the average results, FITS achieves better performance on 20 instances, while
GRASP, TS, GRASP+TS, IVNS, GVNS and SGVNS outperform the other
methods on 2, 0, 2, 10, 10 and 40 instances respectively. In terms of the average
percent deviation (Average Devbest/Devavg), FITS reports the smallest devia-
tion from the best solutions obtained within this experiment (0.19%/0.33%).
Except for the comparison with SGVNS, the statistical test reveals a sig-
nificant difference in performance between each of the reference algorithms
(p-value ≤ 0.05), demonstrating the efficiency of FITS on the DB and the
RanReal instances.

4.4 Comparison between FITS and the state-of-the-art algorithms on the
large CCP instances

RanReal960 and MDG benchmarks consist of large instances recently used to
assess the performance of the algorithms for CCP in [7]. A summary of the
statistical results for these instances, obtained with FITS and the reference
algorithms, are shown in Table 4. Detailed results are given in Tables 13 and
14 of the Appendix.

Row p-valuebest/p-valueavg reveals a statistically significant difference in per-
formance between FITS and all the reference algorithms except GVNS. When
considering the average percent deviation from the best-found solutions within
the experiments, SGVNS outperforms all the algorithms with Devbest = 0.01%
and Devavg = 0.61%, while FITS exhibits a better performance than GRASP,
TS, GRASP+TS and IVNS.
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Table 5
Statistical results of FITS and the six state-of-the-art algorithms on handover min-
imization instances with n ≥ 100. The best performance is indicated in bold.

Instance
set

GevPR-
HMP

GQAP BRKGA IVNS GVNS SGVNS FITS

MM
(n ≥
100)

#Best/Avg. 9/4 11/0 2/0 37/18 23/15 24/25 43/30

p-valuebest/p-
valueavg

1.97e-
9/1.68e-
8

5.51e-
9/1.97e-
11

5.47e-
11/1.97e-
11

0.00/0.02 1.19e-
5/0.08

7.44e-
5/0.38

Average
Devbest/Devavg(%)

1.32/1.74 8.37/10.15 3.19/3.94 0.01/0.28 0.20/1.53 0.19/0.33 0.00/0.20

AvgTime(s) - - - 97.82 66.18 75.77 120.48

4.5 Comparison between FITS and the state-of-the-art algorithms on the
handover minimization instances

Table 5 summarizes the statistical results reported with FITS and the six state-
of-the-art algorithms on the handover minimization instances with n ≥ 100.
These reference algorithms include IVNS [24], GVNS [7], SGVNS [7] and three
algorithms proposed in [31]: GevPR-HMP, GQAP and BRKGA. The handover
minimization instances with n ∈ {20, 30, 40} do not appear to be challenging
as all the considered algorithms are able to attain the best-known solution
within a very short computing time for each case. For completeness, the com-
putational results for these instances are provided in Appendix (Table 22).
In Table 5, the results reported with GevPR-HMP, GQAP and BRKGA are
directly compiled from [31], and were obtained over 5 independent runs with a
cutoff time set to 24 hours. This is significantly longer than the time limit used
for IVNS, GVNS, SGVNS and FITS, which is set to 1.0 ∗n seconds (24 hours
vs. n ≤ 400 seconds). The results for IVNS, GVNS, SGVNS and FITS were
obtained across 20 independent runs under the same computing conditions as
described in Section 4.2. When handling the handover minimization instances,
we use the results in the form of minimization for a direct comparison. The
following relation is used to transform the CCP objective function into the
equivalent objective for handover minimization: fmin = 2(

∑

i<j cij − fmax),
where fmin and fmax represent the objective values of handover minimization
and CCP respectively. The symbol “-” denotes the cases when the result is
not reported in the literature. Detailed results are given in Tables 15 and 16
of the Appendix.

From Table 5, we observe that GevPR-HMP, GQAP, BRKGA, IVNS, GVNS,
SGVNS and FITS outperform the other reference algorithms on 9, 11, 2,
37, 23, 24 and 43 instances respectively in terms of the best objective value.
In terms of the average results, FITS achieves a better performance on 30
instances, while GevPR-HMP, GQAP, BRKGA, IVNS, GVNS and SGVNS
outperform the other methods on 4, 0, 0, 18, 15, 25 instances respectively.
Notice that if we sum up the number of times each algorithm performed best,
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we get 149 for Best and 92 Avg respectively. This is because several algorithms
obtain the same best objective value and the same average objective value on
some instances. In terms of the average percent deviation of the best/average
results from the best solutions obtained within this experiment, FITS shows
the best performance with Devbest = 0.00% and Devavg = 0.20%. Finally, the
p-values of the Wilcoxon pairwise test (row ‘p-valuebest/p-valueavg’) show a
statistically significant difference in the best performance between FITS and
the six reference approaches with p-value ≤ 0.05, which shows the benefit of
FITS on the handover minimization instances with n ≥ 100.

4.6 Time-to-target analysis

To further compare the performance between FITS and the reference algo-
rithms, we apply the time-to-target (TTT) analysis which identifies the em-
pirical probability distribution of the time required to achieve a given target
value [1]. We conduct this TTT experiment by executing 100 independent
runs of GRASP, TS, GRASP+TS, IVNS, GVNS, SGVNS and FITS on each
instance. For each instance/target pair, the running times are sorted in an in-
creasing order. We associate with the i-th sorted running time ti a probability
pi = (i−0.5)/100, and plot the points (ti, pi). In this experiment, in order to al-
low all the algorithms to reach the target in all runs, the target value is set to be
a value slightly smaller than the best obtained objective value. Fig. 1 illustrates
the results for the compared algorithms on instances RanReal240 05, Ran-
Real240 09, RanReal240 16, RanReal480 05, RanReal480 14, RanReal480 18,
RanReal960 02.30, RanReal960 06.30, RanReal960 07.40, RanReal960 05.60,
MDG-a 23 and MDG-a 35 which are randomly selected from three groups of
the largest benchmark instances (RanReal, RanReal960 and MDG). From
Fig. 1, we observe that FITS has the highest probability of reaching the
target result with the shortest computing time on instances RanReal240 05,
RanReal240 09, RanReal240 16, RanReal480 05, RanReal960 02.30 and Ran-
Real960 07.40, and is the third best performing algorithm (after SGVNS and
GVNS) on instances RanReal480 18, RanReal960 06.30, RanReal960 05.60,
MDG-a 23 and MDG-a 35. We conducted the TTT experiments on other in-
stances and observed similar behavior. Therefore, this experiment confirms
that FITS competes very favorably with the reference algorithms GRASP,
TS, GRASP+TS, IVNS, GVNS and SGVNS.

4.7 Comparison between FITS and MA

In this section, we additionally compare FITS and MA on the first two sets
(DB and RanReal) of CCP instances and the handover minimization instances
with n ≥ 100. For this comparison, each algorithm is executed 20 times per
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Fig. 1. Probability distribution of the time required to achieve a target value.

Table 6
Comparative statistical results between FITS and MA on the first two sets (DB and
RanReal) of CCP instances and the handover minimization instances with n ≥ 100.
The better performances are indicated in bold.

Instance set FITS MA

DB & RanReal #Better1/Better2 3/7 25/33

Average Devbest/Devavg(%) 0.03/0.11 0.00/0.10

MM (n ≥ 100) #Better1/Better2 0/8 3/19

Average Devbest/Devavg(%) 0.00/0.15 0.00/0.05
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Table 7
Summary of statistical results obtained with FITS and its two underlying com-
ponents FLS and InfLS for the RanReal benchmark set. The best performance is
indicated in bold.

Instance set FITS FLS InfLS

RanReal #Best/Avg. 35/36 12/4 0/0

p-valuebest/p-valueavg 6.23e-5/4.20e-7 2.54e-10/2.54e-10

Average Devbest/Devavg(%) 0.01/0.18 0.03/0.21 0.33/0.53

instance with a prolonged computing time of 15.0 ∗ n seconds. The reason
behind an extended cutoff time is due to our experiences and observations
from previous studies [19] indicating a slower convergence pace of an MA
compared to a local search algorithm.

Table 6 summarizes the statistical comparative results between FITS and MA,
while detailed results are given in Tables 17 and 18 in the Appendix. In a nut-
shell, MA improves on the best result reported by FITS for 28 instances, and
fails to match the best solution obtained with FITS for only three instances. In
terms of the average performance, MA outperforms FITS on 52 instances, and
is outperformed by FITS on 15 instances. When considering the average per-
cent deviation of the best/average results from the best solutions found within
this experiment (Average Devbest/Devavg), MA achieves a better performance
than FITS on all the three sets of instances. Finally, for all the three sets of
instances, the Wilcoxon test indicates a statistically significant difference in
the best and the average performances with p-value = 6.437e-4 and p-value =
0.049 respectively. Thus, we can conclude that MA should be considered over
FITS given a longer time limit.

5 Analysis

This section evaluates the importance of the key elements of the proposed
FITS and MA algorithms: (i) the joint exploitation of feasible and infeasible
search space, (ii) the best improvement strategy vs. the first improvement
strategy, and (iii) the cluster-based crossover operator. The experiments pre-
sented below are carried out on a set of 40 instances from the RanReal bench-
mark with 20 independent executions per instance under the same computing
platform as described in Section 4.2.
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Fig. 2. Percentage deviation of the average result reported with FITS, FLS and ILS
from the best solutions found in this experiment for the 40 RanReal instances.

5.1 Analysis of the combined exploitation of feasible and infeasible search
space

While a number of existing heuristics for CCP including TS [29], IVNS [24],
GVNS [7] and SGVNS [7] restrict their search to the feasible regions only, a key
feature of FITS and several other heuristics like GRASP-PR [10], TS SO [6],
GevPR-HMP [31] and GQAP [31] is the consideration of infeasible solutions.
By alternating between feasible and infeasible local searches, FITS is able to
visit various zones of the search space without being easily trapped in a local
optimum. To evaluate the effectiveness of this hybrid scheme, we compare
FITS with its two underlying components, namely the feasible local search
(FLS) and the infeasible local search (InfLS).

Table 7 summarizes the statistical results of this analysis, while detailed results
are given in the Appendix (Table 19). As observed in Table 7, it is evident that
FITS outperforms both FLS and InfLS. More precisely, in terms of the best
and the average performance, FITS respectively reports matching or better
results than both algorithms on 35 and 36 out of the 40 instances with p-
values of 6.23e-5/4.20e-7 and 2.54e-10/2.54e-10. We further observe that InfLS
alone appears to be the weakest of the three versions on all of the tested
instances. To complement this comparison, Fig. 2 plots the performances of the
three algorithms on these 40 instances. For each instance and each algorithm,
the y-axis shows the percent deviation of the average result from the best
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Table 8
Summary of statistical results obtained with FITS and its variant FITS FI on the
40 RanReal instances. The best performance is indicated in bold.

Instance set FITS FITS FI

RanReal #Best/Avg. 40/40 0/0

p-valuebest/p-valueavg 2.54e-10/2.54e-10

Average Devbest/Devavg(%) 0.00/0.15 0.56/0.71

AvgTime(s) 249.39 157.44

solutions found in this experiment. The figure further highlights the benefit of
the combined use of the feasible and the infeasible local search.

5.2 The best improvement strategy v.s. the first improvement strategy

As described in Section 2.1, FITS applies the best improvement strategy to
select a solution from the neighborhoods induced by the three move operators,
i.e., OneMove, SwapMove and 2-1 Exchange. To verify the importance of
this feature, we create a variant of FITS (denoted by FITS FI) that uses the
first improvement strategy, where the earliest visited neighboring solution of
improved quality replaces the current solution. The summary of statistical
results of this comparison on the 40 RanReal instances are shown in Table 8,
while detailed results are given in Table 20 in the Appendix.

From Table 8, one notices that FITS outperforms FITS FI on all of the
instances both in terms of the best and the average result (#Best/Avg.).
In terms of the average percent deviation of the best/average results from
the best solutions obtained within this experiment (Average Devbest/Devavg),
FITS shows a better performance than FITS FI with p-value = 2.54e-10 and
p-value = 2.54e-10 respectively. These observations confirm the usefulness of
the best improvement strategy within the proposed tabu search framework.
However, as expected, FITS FI shows to be faster than FITS in terms of the
average time required to reach the final solution.

5.3 Analysis of the cluster-based crossover

5.3.1 Motivation behind the cluster-based crossover

As explained in Section 3.1, the basic idea behind the cluster-based crossover
is to preserve building blocks (clusters of nodes) from parent individuals to
offspring solution. Such crossovers have shown to be effective when there is
a large percentage of nodes that are always grouped together between high-
quality local optima (including global optima which are technically speaking
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Table 9
Percentage of nodes that are grouped together in local optima of various qualities

Instance Shq Sall Slo Instance Shq Sall Slo

RanReal240 01 72 54 45 RanReal480 01 82 29 14

RanReal240 02 85 49 39 RanReal480 02 88 26 14

RanReal240 03 75 48 38 RanReal480 03 88 28 14

RanReal240 04 80 48 41 RanReal480 04 92 29 14

RanReal240 05 86 48 38 RanReal480 05 83 26 14

also local optima) [4].

Given two local optima s1 = {C1
1 , C

1
2 , ..., C

1
p} and s2 = {C2

1 , C
2
2 , ..., C

2
p}, let

E
′
= {(C1

i , C
2
j )|i ∈ {1, 2, .., p}, j ∈ {1, 2, .., p}} denote the set of all the p × p

cluster combinations of s1 and s2, and let J denote the set of nodes that are
grouped together in both s1 and s2. Starting from J = ∅, we use an iterative
procedure that determines the largest percentage of nodes grouped together in
s1 and s2 with the following steps: (i) for each cluster combination (C1

i , C
2
j ) ∈

E
′
, compute the number of identical nodes kC1

i
C2

j
= C1

i ∩ C2
j ; (ii) select a

combination (C1
i , C

2
j ) ∈ E

′
with the largest kC1

i
C2

j
and place the common

nodes into J (i.e., J = J ∪ {C1
i ∩ C2

j }); (iii) remove from E
′
all combinations

associated with C1
i and C2

j . This process is repeated until E
′
becomes empty.

The percentage of nodes that are grouped together in both s1 and s2 is then
expressed as 100% ∗ |J |

|V |
.

For this analysis, we employ a selection of 10 hard instances from the Ran-
Real set. For each instance, we collect a set Sall of local optima of different
qualities, obtained after 500 independent runs of MA and FITS with differ-
ent time limits. We select the top 20% (100) local optima with the largest
objective values from Sall to form the subset Shq of ‘high-quality solutions’.
Similarly, we take the bottom 20% (100) with the smallest objective values to
form the subset Slo of ‘low-quality solutions’. Table 9 shows the percentages of
common node groupings across all the local optima in Shq, Sall and Slo respec-
tively. From these results, we conclude that the percentage of nodes that are
grouped together throughout each of the high-quality local optima from Shq

is very large, ranging from 72% to 92%. Assuming that high-quality solutions
might be close to an optimal solution or could themselves constitute optimal
solutions, it is very likely that these clusters might form the building blocks
of a global optimum.

5.3.2 Comparison with the uniform crossover

To evaluate the benefit of the cluster-based crossover that transfers pertinent
properties from parents to offspring, we compare it with a standard uniform
crossover where each node is randomly transferred to the same cluster as
in one of the two parents. As the resulting offspring may violate the capacity
constraint, the uniform crossover proceeds next by moving a randomly selected
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Table 10
Comparison of the two MA versions using a uniform and a cluster-based crossover
respectively on the 40 RanReal instances. The best performance is indicated in bold.

Instance set Uniform CX Cluster-based CX

RanReal #Best/Avg. 2/0 31/40

p-valuebest/p-valueavg 4.46e-7/2.54e-10

Average Devbest/Devavg(%) 0.56/0.71 0.00/0.15

AvgTime(s) 2898.81 3856.70

node from the highest to the lowest weight cluster until the solution feasibility
is reached. For this experiment, the other MA components are left unchanged.
The time limit is set to 15.0 ∗ n seconds per execution.

Table 10 summarizes the statistical results for each MA version on the 40
RanReal instances, while detailed results are given in Table 21 in the Ap-
pendix. Although the cluster-based crossover results in longer computing time
than the uniform crossover due to a higher complexity, it clearly outperforms
the uniform crossover in terms of both the best and the average results with
p-value = 4.46e-7 and p-value = 2.54e-10 respectively. Indeed, out of the 40 in-
stances, the cluster-based crossover is outperformed by the uniform crossover
only on two instances. These observations highlight the importance of pre-
serving important building blocks from parents to children in case of CCP.

6 Conclusion

We presented two highly effective heuristics for the Capacitated Clustering
Problem (CCP): a tabu search approach (denoted as FITS) that alternates
between exploration in feasible and infeasible search space regions, and a
Memetic Algorithm (MA) that extends FITS with a dedicated cluster-based
crossover and a quality-and-distance pool updating strategy. The computa-
tional results on five sets of 183 CCP instances indicate that both FITS and
MA compete favorably with the current state-of-the-art algorithms. The in-
vestigation of several essential components of the proposed algorithms sheds
light on the following points. First, the consideration of both feasible and
infeasible search space regions can greatly enhance the neighborhood search
for CCP. Second, the best improvement strategy is able to outperform the
first improvement strategy within the tabu search framework for CCP. Third,
given an extended time limit, MA can further improve upon the performance
of FITS which is greatly due to the cluster-based crossover that transfers per-
tinent properties from parents to offspring. The use of this crossover within
MA was motivated by a large degree of similarity between high-quality CCP
solutions. Finally, this work demonstrates the effectiveness of exploring both
feasible and infeasible spaces for CCP - an idea that certainly deserves to be
investigated on other highly constrained problems in the future.
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Appendix

The purpose of this appendix is to show detailed computational results and
comparisons between our two proposed algorithms (FITS and MA) and the
state-of-the-art algorithms on the complete CCP benchmark consisting of 183
instances (Tables 11-22). For each instance and approach, columns ‘fbest’,
‘favg’ and ‘tavg’ show respectively the best objective value, the average ob-
jective value and the average computing time in seconds required to reach
the final solution (see Section 4.2 for the used experimental protocol). Col-
umn ‘Devbest/Devavg’ indicates the percent deviation between the best or the
average result and the best solutions obtained within each experiment. Row
‘#Best’ gives the number of cases when each algorithm outperforms the re-
maining approaches, while row ‘Average’ shows the average result for a given
subset of instances. Finally, row ‘p-value’ indicates the outcome of the non-
parametric Friedman tests on the results obtained with FITS and the reference
algorithms. The best results are highlighted in bold.
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Table 11. Comparison of FITS with six state-of-the-art algorithms on the first two sets of CCP instances (RanReal and DB).

fbest favg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

Sparse82 01 1342.17 1336.18 1342.17 1342.17 1342.17 1342.17 1342.17 1342.13 1319.78 1342.08 1342.17 1342.17 1342.17 1342.17

Sparse82 02 1306.64 1304.07 1306.64 1306.64 1306.64 1306.64 1306.64 1305.13 1281.86 1305.82 1306.64 1306.64 1306.64 1306.64

Sparse82 03 1352.60 1353.94 1353.94 1353.94 1353.94 1353.94 1353.94 1349.32 1340.87 1351.97 1353.94 1353.94 1353.94 1353.94

Sparse82 04 1289.41 1289.85 1291.22 1291.22 1291.22 1291.22 1291.22 1286.76 1275.32 1286.79 1291.22 1291.22 1291.22 1291.22

Sparse82 05 1352.35 1351.93 1352.35 1352.35 1352.35 1352.35 1352.35 1352.35 1326.91 1352.35 1352.35 1352.35 1352.35 1352.35

Sparse82 06 1354.61 1354.61 1354.61 1354.61 1354.61 1354.61 1354.61 1348.27 1338.99 1354.53 1354.61 1354.61 1354.61 1354.61

Sparse82 07 1266.94 1263.46 1266.94 1266.94 1266.94 1266.94 1266.94 1266.41 1240.36 1266.49 1266.94 1266.94 1266.94 1266.94

Sparse82 08 1393.02 1391.80 1393.02 1393.02 1393.02 1393.02 1393.02 1393.02 1356.97 1393.02 1393.02 1393.02 1393.02 1393.02

Sparse82 09 1294.12 1294.12 1293.39 1294.12 1294.12 1294.12 1294.12 1293.50 1283.51 1293.39 1294.12 1294.12 1294.12 1294.12

Sparse82 10 1356.98 1356.98 1356.98 1356.98 1356.98 1356.98 1356.98 1356.64 1331.70 1356.92 1356.98 1356.98 1356.98 1356.98

RanReal240 01 208042.53 223612.67 222583.14 224831.56 224580.56 224968.01 224941.48 205301.82 221895.65 221577.41 224571.29 224207.09 224769.72 224802.06

RanReal240 02 192176.29 202712.60 202267.35 204624.36 204205.41 204624.36 204624.36 190315.97 201126.44 200804.77 204275.49 203682.12 204444.31 204359.38

RanReal240 03 189174.76 196190.26 196219.48 198861.68 198472.78 199059.56 198954.91 184911.36 193715.43 194896.16 198606.95 197806.87 198849.22 198799.84

RanReal240 04 211858.14 222757.74 223014.44 225390.88 225144.59 225627.16 225627.16 208108.02 220498.11 221213.35 225069.14 224463.81 225389.88 225364.97

RanReal240 05 185068.56 193354.26 193366.04 195540.41 194911.72 195516.57 195564.48 182679.54 191838.80 191419.12 195184.84 194361.91 195306.51 195320.28

RanReal240 06 204852.60 214549.17 214795.75 216713.91 216383.13 216733.31 216747.32 201609.66 213162.89 213268.67 216355.53 215849.06 216584.23 216487.02

RanReal240 07 199266.17 207885.74 207651.76 209216.90 209118.64 209223.34 209305.70 197642.75 206463.38 206283.07 208992.44 208329.21 209080.57 209029.23

RanReal240 08 191567.87 203825.77 202751.94 205246.82 204754.36 205154.20 205246.82 188619.12 201792.09 201223.78 204842.79 204137.78 204951.20 204961.05

RanReal240 09 198371.82 208130.74 208084.10 209142.07 208702.16 209007.44 209159.16 195694.73 206905.51 206706.66 208720.16 208276.52 208904.78 208952.48

RanReal240 10 179776.60 190295.58 189990.45 192885.48 192343.75 193062.60 192986.21 178618.43 188282.57 188638.25 192598.79 191874.34 192842.05 192811.13

RanReal240 11 192080.94 203400.14 202566.12 204647.20 204399.04 204615.71 204722.75 190809.39 201583.11 201425.46 204377.08 203900.12 204480.92 204559.39

RanReal240 12 190392.42 200045.55 199587.27 201028.32 200822.69 201076.30 201117.11 188016.22 198745.49 198735.77 200763.75 200150.52 200938.30 200797.67

RanReal240 13 188179.08 200362.63 200707.10 202331.20 201977.87 202321.58 202335.99 185699.95 199258.93 199400.56 202027.28 201356.20 202198.63 202139.57

RanReal240 14 209616.67 227192.94 226818.46 228870.89 228661.60 228775.14 228870.89 205710.79 225659.19 225340.11 228520.04 228054.32 228569.78 228554.78

RanReal240 15 179818.51 189389.87 188797.36 191152.17 190575.48 191238.53 191255.87 177071.08 187190.02 187392.49 190827.68 189965.59 191058.62 190923.28

RanReal240 16 192596.39 201462.83 202285.47 204074.95 203816.48 203991.53 204054.99 189519.11 200135.28 200807.00 203668.49 203270.11 203649.04 203710.39

RanReal240 17 187556.75 194012.92 194388.66 195206.73 194840.79 195423.83 195561.36 186122.62 192037.08 192104.74 194950.57 194404.70 195241.19 195243.32

RanReal240 18 180830.22 193593.81 192869.78 194916.37 194915.62 195120.98 195100.39 179180.63 191159.08 191152.82 194704.23 194114.09 194967.73 194872.13

RanReal240 19 188396.09 196746.61 196285.24 199200.03 198828.82 199307.33 199225.98 186251.65 194628.91 195112.90 198905.05 198119.14 199093.86 199040.43

RanReal240 20 201830.01 210191.93 210396.12 212264.10 211984.80 212268.46 212268.52 199866.05 208860.59 208700.04 211871.74 211458.51 212037.43 212049.85

RanReal480 01 489977.75 545089.31 546703.95 554337.23 553224.53 555430.60 555489.92 483244.45 538552.42 540798.54 553795.85 552326.59 554994.68 554376.54

RanReal480 02 464078.50 500020.24 502865.44 510066.41 508711.62 510718.79 511280.50 460760.58 494706.50 497535.90 509058.46 507540.62 510304.78 509757.15

RanReal480 03 449196.02 486459.38 486913.79 496334.51 495140.23 497725.86 497295.19 446619.33 480858.95 482487.60 495409.98 493706.92 496785.80 496059.50

RanReal480 04 472680.46 512815.26 510347.72 521669.00 520653.34 522572.81 522305.16 468798.75 504488.99 505766.67 520051.55 519051.60 521952.28 521062.13

RanReal480 05 434381.50 471071.30 473774.42 483670.19 481803.95 483819.77 484084.66 428924.10 467096.07 469365.07 482390.51 480508.80 482603.84 482867.74

RanReal480 06 479994.22 523619.23 524093.48 533589.61 532702.72 534515.67 533991.27 476225.99 518672.22 519996.88 532462.25 531627.12 533916.00 533036.36

RanReal480 07 484189.08 535454.67 533884.71 545343.81 544445.60 545812.49 545470.73 477599.50 530962.69 531611.12 544060.83 542318.56 545302.82 544651.12

RanReal480 08 482171.91 521615.37 521459.15 531974.48 531287.92 532736.12 532417.42 477609.32 516060.40 517411.97 531023.25 529525.39 532109.62 531667.91

RanReal480 09 492676.73 546829.14 545707.17 555604.38 555163.27 556865.18 556868.85 481867.19 539150.61 541281.01 554820.43 553394.39 556081.91 555634.40

RanReal480 10 466084.48 508095.64 508999.35 519066.57 517431.34 520014.70 520257.54 461032.38 503102.84 504603.14 518412.32 516228.20 518024.16 518071.71

RanReal480 11 473865.90 517123.38 514661.24 523463.33 522626.50 524124.60 523991.29 467783.06 508603.89 510647.48 522201.99 521218.97 523508.02 522816.94

RanReal480 12 451806.42 493221.32 492811.38 501462.57 499914.17 502570.10 501915.56 448852.16 489093.31 488561.87 500055.30 498596.97 501632.20 500776.79

RanReal480 13 487797.57 527920.79 524454.74 534294.24 533672.27 535411.94 535025.51 482511.37 519991.80 520834.94 533478.80 532322.68 534651.24 533823.79

RanReal480 14 451992.66 503936.70 504472.18 513186.65 512764.33 514537.52 514107.62 444843.33 497303.47 499403.40 512501.71 511212.78 513935.11 513053.25

RanReal480 15 465846.65 509749.02 507379.12 516657.20 515607.47 518029.18 517205.02 461078.21 503685.19 502983.82 515416.17 514465.20 517189.00 516018.38

RanReal480 16 487514.16 540214.26 541062.43 549230.25 549033.57 549840.64 549552.63 483468.24 533478.98 536063.21 548274.66 547075.83 549253.54 548462.13

RanReal480 17 482452.36 530089.83 529061.73 537223.44 536402.45 537993.79 537924.55 476468.76 523792.28 523877.97 536149.06 534770.20 537568.15 536745.39

RanReal480 18 478578.77 518280.43 517080.81 525490.09 524631.54 526349.49 525822.76 474635.66 510154.88 510238.83 524515.11 522908.72 525453.50 524712.42

RanReal480 19 474559.35 512590.03 513182.29 522280.40 521672.59 522757.15 522316.22 469860.30 508273.65 509272.24 521442.89 519720.44 522218.13 521267.22

RanReal480 20 461494.13 508105.69 511126.25 518436.63 516488.64 518847.01 518349.10 457017.22 504721.35 505910.27 516935.15 515450.41 518202.52 517430.77

#Best 8 4 9 14 10 32 29 2 0 2 10 10 40 20

p-value 7.75e-11 7.75e-11 2.86e-9 1.25e-7 1.87e-9 0.88 1.54e-12 1.54e-12 1.54e-10 7.70e-8 2.54e-10 0.02
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Table 12. Comparison between FITS and six state-of-the-art algorithms on the first two sets of CCP instances (RanReal and DB).

Devbest/Devavg(%) tavg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

Sparse82 01 0.00/0.00 0.45/1.67 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 32.67 5.82 25.73 0.32 30.83 31.25 12.51

Sparse82 02 0.00/0.12 0.20/1.90 0.00/0.06 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 41.34 4.71 32.60 1.32 25.10 22.08 20.30

Sparse82 03 0.10/0.34 0.00/0.97 0.00/0.15 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 27.53 5.30 40.18 0.18 24.29 30.60 4.28

Sparse82 04 0.14/0.35 0.11/1.23 0.00/0.34 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 36.28 11.28 30.47 6.89 25.90 29.40 26.75

Sparse82 05 0.00/0.00 0.03/1.88 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 16.31 6.81 8.53 0.11 42.73 25.40 3.95

Sparse82 06 0.00/0.47 0.00/1.15 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 45.16 5.36 41.17 0.14 34.59 28.80 3.57

Sparse82 07 0.00/0.04 0.27/2.10 0.00/0.04 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 32.73 3.66 35.85 0.64 31.43 35.06 4.27

Sparse82 08 0.00/0.00 0.09/2.59 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.42 15.25 0.38 0.04 31.41 26.69 10.18

Sparse82 09 0.00/0.05 0.00/0.82 0.06/0.06 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 13.57 5.79 16.82 0.99 25.39 31.97 4.53

Sparse82 10 0.00/0.03 0.00/1.86 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 35.45 12.64 41.41 1.00 13.99 29.50 1.50

RanReal240 01 7.53/8.75 0.61/1.38 1.07/1.52 0.07/0.19 0.18/0.35 0.00/0.18 0.02/0.08 116.19 24.61 138.34 155.57 155.92 127.16 149.09

RanReal240 02 14.29/15.12 9.59/10.29 9.78/10.44 8.73/8.89 0.00/9.15 8.78/8.97 8.73/8.85 95.06 31.06 152.77 184.44 159.56 158.20 150.75

RanReal240 03 4.92/7.07 1.40/2.64 1.38/2.05 0.05/0.18 0.25/0.58 0.00/0.27 0.01/0.09 142.89 8.67 127.14 186.06 164.11 139.26 169.95

RanReal240 04 6.10/7.76 1.27/2.27 1.16/1.96 0.10/0.25 0.21/0.52 0.04/0.19 0.00/0.12 102.72 22.69 147.86 159.70 175.00 137.87 118.58

RanReal240 05 5.37/6.59 1.13/1.91 1.12/2.12 0.01/0.19 0.33/0.61 0.06/0.31 0.00/0.12 112.52 12.77 133.26 155.02 179.73 136.48 132.33

RanReal240 06 5.49/6.98 1.01/1.65 0.90/1.60 0.02/0.18 0.17/0.41 0.08/0.27 0.00/0.12 113.64 34.23 146.87 174.51 187.59 126.61 155.99

RanReal240 07 4.80/5.57 0.68/1.36 0.79/1.44 0.04/0.15 0.09/0.47 0.02/0.23 0.00/0.13 98.82 48.81 171.68 160.67 195.33 144.35 144.96

RanReal240 08 6.66/8.10 0.69/1.68 1.22/1.96 0.00/0.20 0.24/0.54 0.11/0.35 0.00/0.14 114.33 20.45 137.72 145.94 193.88 122.79 124.22

RanReal240 09 5.16/6.44 0.49/1.08 0.51/1.17 0.01/0.21 0.22/0.42 0.07/0.23 0.00/0.10 145.30 43.70 158.65 194.36 171.09 136.24 141.69

RanReal240 10 6.84/7.44 1.39/2.44 1.55/2.25 0.05/0.20 0.33/0.58 0.02/0.25 0.00/0.09 112.01 12.19 129.47 183.49 145.39 162.77 134.20

RanReal240 11 6.18/6.80 0.65/1.53 1.05/1.61 0.04/0.17 0.16/0.40 0.04/0.18 0.00/0.08 122.37 65.47 161.82 157.98 155.12 136.25 129.91

RanReal240 12 5.33/6.51 0.53/1.18 0.76/1.18 0.04/0.18 0.15/0.48 0.00/0.25 0.00/0.16 147.93 96.77 163.87 186.71 157.43 123.13 132.03

RanReal240 13 7.00/8.22 0.98/1.52 0.81/1.45 0.00/0.15 0.18/0.48 0.10/0.31 0.00/0.10 107.97 30.38 150.83 173.46 171.44 127.25 131.34

RanReal240 14 8.41/10.12 0.73/1.40 0.90/1.54 0.00/0.15 0.09/0.36 0.06/0.24 0.00/0.14 104.70 12.33 131.31 147.56 164.87 112.27 135.87

RanReal240 15 5.98/7.42 0.98/2.13 1.29/2.02 0.05/0.22 0.36/0.67 0.17/0.41 0.00/0.17 147.90 11.13 135.10 167.88 188.75 154.19 131.83

RanReal240 16 5.62/7.13 1.28/1.93 0.88/1.60 0.00/0.20 0.13/0.39 0.07/0.21 0.01/0.18 134.19 20.82 153.67 165.22 181.82 130.93 89.11

RanReal240 17 4.09/4.83 0.79/1.80 0.60/1.77 0.18/0.31 0.37/0.59 0.06/0.31 0.00/0.16 97.91 31.38 146.50 171.75 179.25 149.06 171.03

RanReal240 18 7.31/8.16 0.77/2.02 1.14/2.02 0.09/0.20 0.09/0.51 0.04/0.20 0.00/0.12 134.95 20.60 133.33 154.60 169.52 167.15 152.83

RanReal240 19 5.44/6.51 1.24/2.31 1.48/2.06 0.01/0.16 0.20/0.56 0.11/0.30 0.00/0.09 118.97 10.95 132.71 173.65 179.99 140.21 98.09

RanReal240 20 4.93/5.85 0.99/1.62 0.89/1.69 0.01/0.20 0.15/0.39 0.00/0.18 0.01/0.11 139.31 33.98 151.07 188.64 175.52 112.33 115.38

RanReal480 01 11.83/13.04 1.91/3.09 1.62/2.69 0.25/0.35 0.45/0.61 0.00/0.26 0.04/0.24 269.94 91.12 333.56 391.12 419.98 301.25 340.60

RanReal480 02 9.23/9.88 2.20/3.24 1.65/2.69 0.24/0.43 0.50/0.73 0.05/0.20 0.00/0.30 264.17 78.83 289.46 403.38 414.24 293.36 355.59

RanReal480 03 9.72/10.24 2.23/3.36 2.14/3.03 0.25/0.43 0.49/0.77 0.00/0.18 0.05/0.30 202.03 53.59 299.70 420.24 427.12 331.81 352.06

RanReal480 04 9.54/10.28 1.86/3.45 2.33/3.21 0.17/0.48 0.36/0.67 0.00/0.21 0.04/0.28 221.32 93.30 302.04 383.19 428.09 332.13 399.51

RanReal480 05 10.27/11.39 2.69/3.51 2.13/3.04 0.09/0.35 0.47/0.74 0.10/0.24 0.00/0.25 235.49 57.96 288.63 417.55 448.15 325.05 335.84

RanReal480 06 10.26/10.97 2.11/3.03 2.02/2.79 0.24/0.45 0.41/0.61 0.00/0.22 0.17/0.35 222.09 103.33 310.30 393.37 428.17 300.77 390.06

RanReal480 07 11.28/12.49 1.89/2.71 2.18/2.60 0.08/0.31 0.24/0.63 0.00/0.18 0.06/0.21 282.40 101.60 312.15 395.01 423.31 342.07 390.23

RanReal480 08 9.56/10.42 2.16/3.20 2.19/2.95 0.22/0.40 0.35/0.68 0.00/0.21 0.14/0.28 239.63 88.35 328.43 388.45 398.32 356.39 380.64

RanReal480 09 11.59/13.53 1.87/3.25 2.07/2.86 0.29/0.43 0.37/0.69 0.00/0.26 0.07/0.29 237.49 78.39 315.08 376.21 421.61 350.35 383.67

RanReal480 10 10.41/11.38 2.34/3.30 2.16/3.01 0.23/0.35 0.54/0.77 0.12/0.27 0.00/0.42 241.70 83.45 290.39 383.71 428.06 300.43 328.85

RanReal480 11 9.62/10.78 1.37/3.00 1.84/2.61 0.17/0.41 0.33/0.59 0.00/0.17 0.07/0.29 227.89 94.12 312.81 383.91 421.15 320.08 383.65

RanReal480 12 10.04/10.63 1.79/2.61 1.87/2.72 0.15/0.43 0.46/0.72 0.00/0.19 0.06/0.29 271.59 89.29 309.44 397.43 409.11 270.86 347.32

RanReal480 13 8.87/9.86 1.37/2.85 2.02/2.70 0.18/0.33 0.30/0.55 0.00/0.18 0.05/0.27 208.64 138.35 313.17 404.23 390.76 327.70 330.84

RanReal480 14 12.10/13.49 2.00/3.29 1.89/2.88 0.20/0.33 0.28/0.58 0.00/0.18 0.02/0.23 276.22 73.53 311.36 405.04 419.87 319.14 352.07

RanReal480 15 9.99/10.91 1.51/2.68 1.97/2.82 0.18/0.42 0.38/0.60 0.00/0.17 0.07/0.30 235.52 118.86 319.34 384.96 418.77 313.91 387.02

RanReal480 16 11.34/12.08 1.76/2.98 1.60/2.51 0.12/0.29 0.15/0.51 0.00/0.14 0.06/0.26 227.75 104.65 322.10 345.11 419.82 301.16 392.78

RanReal480 17 10.32/11.43 1.46/2.63 1.65/2.62 0.14/0.33 0.29/0.59 0.00/0.18 0.00/0.22 229.01 109.71 287.42 386.16 411.52 320.59 360.93

RanReal480 18 8.98/9.73 1.43/2.98 1.66/2.96 0.06/0.25 0.23/0.55 0.02/0.18 0.00/0.21 227.34 106.08 292.13 368.20 431.30 278.26 320.60

RanReal480 19 9.20/10.10 1.92/2.75 1.81/2.55 0.07/0.23 0.18/0.55 0.00/0.17 0.06/0.26 249.78 75.37 303.77 400.78 435.58 306.80 380.69

RanReal480 20 11.03/11.90 2.05/2.70 1.46/2.47 0.05/0.34 0.43/0.63 0.00/0.19 0.07/0.25 201.47 124.30 344.80 385.30 420.08 339.09 353.52

Average 6.66/7.56 1.33/2.42 1.35/2.00 0.26/0.40 0.22/0.63 0.20/0.36 0.19/0.33 149.25 50.68 187.26 224.24 243.04 187.33 201.35
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Table 13. Comparison of FITS with six state-of-the-art algorithms on the large CCP instances (RanReal960 and MDG).

fbest favg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

RanReal960 01.30 1160656.62 1293137.12 1295744.06 1331323.28 1331996.73 1337853.23 1333878.00 1151895.17 1283288.50 1290241.93 1329095.10 1328415.40 1335679.54 1332712.78

RanReal960 02.30 1216485.40 1389456.81 1392709.68 1426870.24 1427037.60 1433071.63 1434529.49 1202250.66 1384366.48 1388067.85 1423903.72 1422960.00 1430808.90 1433886.30

RanReal960 03.30 1189286.33 1351373.72 1357014.34 1390084.19 1390367.98 1395846.80 1392101.18 1182522.35 1344238.06 1351727.20 1387508.88 1386753.98 1394012.26 1390924.21

RanReal960 04.30 1219509.95 1370623.88 1371234.23 1407607.65 1406916.02 1413478.82 1414344.67 1212573.34 1362351.05 1368276.84 1405972.04 1403198.73 1410438.07 1412460.01

RanReal960 05.30 1188052.95 1325522.71 1329439.01 1363405.33 1362240.30 1370560.76 1365975.96 1182095.82 1319156.72 1324439.72 1360883.59 1359314.24 1367959.84 1365612.74

RanReal960 06.30 1182929.35 1376617.75 1381506.52 1413074.62 1410969.99 1417338.38 1413476.58 1176910.55 1369018.83 1377468.14 1409803.60 1408670.37 1415708.82 1412750.08

RanReal960 07.30 1137446.74 1300578.66 1298460.40 1332205.25 1332748.04 1339735.87 1334504.35 1129944.15 1294554.26 1295020.62 1329503.04 1329170.21 1337029.01 1334263.93

RanReal960 08.30 1257726.73 1425314.30 1429319.26 1462280.35 1460407.11 1466738.95 1463737.39 1245787.22 1416728.40 1424868.01 1458524.76 1457531.52 1464441.53 1462602.72

RanReal960 09.30 1208989.95 1337671.23 1346330.61 1378445.37 1380206.02 1385287.77 1381577.32 1198263.71 1331119.48 1339752.81 1376305.91 1374713.94 1382960.30 1379280.98

RanReal960 10.30 1177285.83 1343535.01 1343597.60 1377646.33 1377009.66 1384154.95 1379905.83 1166762.04 1338126.35 1339495.54 1374311.23 1373790.24 1381870.76 1378772.67

RanReal960 01.40 891572.56 1004227.73 1004270.26 1034548.05 1032872.42 1041148.42 1035642.67 886644.65 993064.32 998964.36 1031462.28 1030512.99 1038487.54 1034626.82

RanReal960 02.40 935401.94 1085305.47 1085823.96 1108588.66 1109086.02 1115789.54 1110547.59 928159.94 1077230.13 1080504.37 1106671.47 1106469.64 1113937.77 1110074.36

RanReal960 03.40 921042.44 1044295.09 1052879.25 1081509.08 1080281.13 1086488.77 1083240.15 915374.21 1038465.67 1048423.29 1079553.82 1077244.61 1085060.19 1082948.77

RanReal960 04.40 937109.10 1059684.54 1070116.28 1096347.39 1096438.26 1100866.71 1103897.12 933821.48 1056026.26 1061981.40 1092785.74 1091633.05 1098759.10 1101073.37

RanReal960 05.40 906482.91 1029269.47 1027437.77 1056103.80 1057478.73 1063682.56 1059158.09 903666.87 1022127.35 1022735.81 1054445.69 1054478.20 1062213.71 1058478.46

RanReal960 06.40 897340.52 1069823.35 1074709.94 1096895.36 1099861.44 1104590.22 1100368.74 895656.35 1064068.17 1069231.66 1095721.54 1093932.85 1102651.28 1100064.66

RanReal960 07.40 867071.23 1004440.73 1005791.58 1034299.55 1035241.97 1041064.58 1043376.95 863943.79 999659.95 1001132.07 1032667.93 1031362.33 1038879.34 1039933.23

RanReal960 08.40 966280.23 1102339.42 1110622.81 1137464.75 1136567.63 1142282.86 1139865.05 955984.19 1096241.59 1106224.45 1136002.24 1133556.70 1141171.70 1138054.46

RanReal960 09.40 924938.50 1036368.74 1042262.50 1068288.24 1068892.92 1076229.18 1072116.14 921990.58 1028766.23 1034766.78 1066496.30 1066427.06 1073798.91 1071426.07

RanReal960 10.40 904198.86 1035597.43 1049773.93 1069556.59 1069985.94 1077400.98 1072919.65 899148.57 1031513.70 1040754.01 1067889.46 1067548.97 1074400.36 1071480.21

RanReal960 01.60 619038.29 700687.54 701813.93 726465.37 725912.84 732096.63 727690.58 612713.55 695227.62 697743.35 724244.42 723156.84 730601.10 727222.73

RanReal960 02.60 647084.93 748934.65 746043.75 770060.90 770477.46 776289.95 773921.97 641266.62 738650.06 742288.71 768413.74 768062.71 775060.74 772572.49

RanReal960 03.60 632413.61 724699.78 726919.69 753090.65 753094.36 760248.25 756677.95 628405.90 720449.00 723759.32 751419.90 750898.37 758432.10 755442.64

RanReal960 04.60 645023.75 738689.79 739337.91 762952.42 763837.98 769112.25 765253.27 642799.40 730470.51 734819.23 761387.83 760835.94 767780.08 764696.30

RanReal960 05.60 630215.36 716742.73 719501.92 741248.79 741932.85 748581.43 743715.56 624979.06 709477.81 714588.65 739443.77 738830.28 746014.20 743165.17

RanReal960 06.60 622892.55 734541.49 738718.50 761947.94 762260.95 767679.61 763029.06 618513.44 727566.01 732184.86 760369.56 759048.94 765628.88 761957.51

RanReal960 07.60 600734.82 700703.94 701940.30 723439.86 723786.02 728827.33 725993.23 597456.58 693719.70 697375.56 721167.69 720360.15 727427.19 725733.17

RanReal960 08.60 664742.63 762712.02 763064.60 789552.19 787775.07 794363.93 791334.42 658736.52 754557.15 757767.15 786344.58 785553.15 792538.90 790285.98

RanReal960 09.60 638160.86 723165.49 721784.75 747509.96 746710.78 753943.93 750858.18 634848.33 715936.10 718335.78 745313.38 744341.99 751871.94 749209.83

RanReal960 10.60 618919.01 719787.60 724270.46 748812.21 747565.74 754666.01 749883.45 616548.20 715319.84 720345.30 746701.78 745004.51 752583.88 748985.05

MDG-a 21 315160.00 362695.00 374102.00 379241.00 388647.00 389269.00 383164.00 312644.80 360104.20 373209.70 376249.80 387189.20 389208.15 382387.05

MDG-a 22 317268.00 328093.00 371724.00 380665.00 384487.00 386354.00 380817.00 316499.40 325587.15 368874.70 377418.75 384018.35 386007.50 380489.60

MDG-a 23 317128.00 360151.00 369080.00 375697.00 386154.00 387267.00 380630.00 315288.70 359117.55 364125.35 374941.20 385489.20 387019.40 379334.85

MDG-a 24 312916.00 332128.00 372676.00 378258.00 387095.00 388423.00 381783.00 310704.15 326971.20 368878.30 376540.75 386473.15 388008.45 380560.55

MDG-a 25 320905.00 370090.00 382627.00 389242.00 387121.00 398108.00 390623.00 319286.50 368531.30 374075.45 384685.70 395749.55 397471.50 386346.05

MDG-a 26 320433.00 374776.00 386554.00 392407.00 396756.00 402135.00 393222.00 318889.70 372769.80 378871.70 389113.50 400015.60 401471.95 392916.10

MDG-a 27 312370.00 324348.00 356856.00 375566.00 380243.00 381896.00 377617.00 310857.55 322750.50 355431.50 373113.95 379248.65 381208.70 376721.60

MDG-a 28 314843.00 330349.00 372681.00 378486.00 386018.00 387594.00 380748.00 313527.20 328473.25 368721.65 375546.50 385207.20 387004.55 379732.95

MDG-a 29 311435.00 357683.00 363780.00 377175.00 382108.00 383937.00 378239.00 310036.20 356208.50 361418.90 372663.75 381301.50 383008.55 377540.40

MDG-a 30 320558.00 343222.00 381167.00 389615.00 394817.00 396678.00 389452.00 318338.05 338243.30 375183.25 386318.15 394281.50 396041.70 389254.10

MDG-a 31 313035.00 332137.00 372007.00 376920.00 384718.00 386587.00 379407.00 311684.20 328719.90 367440.60 374627.70 384018.25 385749.40 378922.70

MDG-a 32 318574.00 345815.00 369324.00 382405.00 391693.00 393098.00 383333.00 317281.50 336858.50 362748.20 379790.40 391004.60 392578.60 382737.35

MDG-a 33 315383.00 357377.00 368858.00 377689.00 382576.00 384291.00 379047.00 313647.90 356012.45 366607.00 373096.60 381876.80 383273.45 376641.80

MDG-a 34 318048.00 344939.00 372511.00 384412.00 393135.00 394676.00 386544.00 316882.65 336415.90 370375.60 381472.65 392409.55 394176.80 385459.25

MDG-a 35 319670.00 334549.00 379479.00 385251.00 393384.00 394687.00 386347.00 318614.15 331542.20 378821.80 383302.15 392174.20 394059.40 385302.60

MDG-a 36 323168.00 344521.00 382566.00 394867.00 400271.00 402087.00 396368.00 322207.50 340160.80 374720.45 389332.30 400019.40 401287.65 394103.05

MDG-a 37 315054.00 344145.00 369934.00 384811.00 387006.00 388411.00 386195.00 313427.95 339023.50 363213.40 380906.40 386276.45 387875.60 385797.30

MDG-a 38 324112.00 367162.00 380306.00 387472.00 394264.00 395865.00 388712.00 319654.20 361682.75 376996.50 384752.55 393879.15 395287.90 387807.15

MDG-a 39 317407.00 364448.00 372179.00 381738.00 390008.00 391415.00 385975.00 315434.25 363026.80 368562.90 378840.90 389147.50 391074.95 383036.10

MDG-a 40 324559.00 348432.00 390438.00 392751.00 403662.00 405184.00 396321.00 322889.20 344485.80 389367.10 391517.70 403108.90 405008.90 395505.80

#Best 0 0 0 0 0 46 4 0 0 0 0 0 46 4

p-value 1.54e-12 1.54e-12 1.54e-12 1.14e-11 0.09 2.86e-9 1.54e-12 1.54e-12 1.54e-12 1.54e-12 0.16 2.86e-9
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Table 14. Comparison between FITS and the six state-of-the-art algorithms on the large CCP instances (RanReal960 and MDG).

Devbest/Devavg(%) tavg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP+TS IVNS GVNS SGVNS FITS

RanReal960 01.30 13.24/13.90 3.34/4.08 3.15/3.56 0.49/0.65 0.44/0.71 0.00/0.44 0.30/0.38 643.28 659.97 746.31 918.26 811.54 856.21 915.53

RanReal960 02.30 15.20/16.19 3.14/3.50 2.92/3.24 0.53/0.74 0.52/0.81 0.10/0.52 0.00/0.04 589.33 507.99 730.14 797.61 842.95 835.98 904.23

RanReal960 03.30 14.80/15.28 3.19/3.70 2.78/3.16 0.41/0.60 0.39/0.65 0.00/0.39 0.27/0.35 495.00 716.62 700.85 883.41 860.63 829.85 836.81

RanReal960 04.30 13.78/14.27 3.09/3.68 3.05/3.26 0.48/0.59 0.53/0.79 0.06/0.53 0.00/0.13 634.29 355.14 693.39 919.96 832.99 822.40 929.49

RanReal960 05.30 13.32/13.75 3.29/3.75 3.00/3.37 0.52/0.71 0.61/0.82 0.00/0.61 0.33/0.36 472.15 639.50 738.05 804.13 883.85 840.42 957.25

RanReal960 06.30 16.54/16.96 2.87/3.41 2.53/2.81 0.30/0.53 0.45/0.61 0.00/0.45 0.27/0.32 405.17 678.17 713.02 857.85 801.30 834.76 935.81

RanReal960 07.30 15.10/15.66 2.92/3.37 3.08/3.34 0.56/0.76 0.52/0.79 0.00/0.52 0.39/0.41 475.25 422.65 713.50 875.58 850.22 816.60 894.98

RanReal960 08.30 14.25/15.06 2.82/3.41 2.55/2.85 0.30/0.56 0.43/0.63 0.00/0.43 0.20/0.28 365.27 707.84 796.19 804.15 822.22 831.19 948.47

RanReal960 09.30 12.73/13.50 3.44/3.91 2.81/3.29 0.49/0.65 0.37/0.76 0.00/0.37 0.27/0.43 575.87 602.61 710.25 815.06 863.40 812.81 884.89

RanReal960 10.30 14.95/15.71 2.93/3.33 2.93/3.23 0.47/0.71 0.52/0.75 0.00/0.52 0.31/0.39 355.56 758.63 692.78 878.66 850.02 792.14 897.68

RanReal960 01.40 14.37/14.84 3.55/4.62 3.54/4.05 0.63/0.93 0.79/1.02 0.00/0.79 0.53/0.63 560.30 527.60 735.84 877.73 847.87 832.62 913.51

RanReal960 02.40 16.17/16.82 2.73/3.46 2.69/3.16 0.65/0.82 0.60/0.84 0.00/0.60 0.47/0.51 446.57 450.16 765.06 824.06 876.23 830.26 938.57

RanReal960 03.40 15.23/15.75 3.88/4.42 3.09/3.50 0.46/0.64 0.57/0.85 0.00/0.57 0.30/0.33 455.66 480.50 753.60 905.64 850.33 816.43 829.18

RanReal960 04.40 15.11/15.41 4.01/4.34 3.06/3.80 0.68/1.01 0.68/1.11 0.27/0.68 0.00/0.26 370.04 620.19 729.88 800.47 904.06 761.94 931.93

RanReal960 05.40 14.78/15.04 3.24/3.91 3.41/3.85 0.71/0.87 0.58/0.87 0.00/0.58 0.43/0.49 546.96 599.63 652.52 826.35 857.74 803.47 882.95

RanReal960 06.40 18.76/18.92 3.15/3.67 2.71/3.20 0.70/0.80 0.43/0.96 0.00/0.43 0.38/0.41 463.89 638.31 701.67 876.40 835.26 840.43 795.61

RanReal960 07.40 16.90/17.20 3.73/4.19 3.60/4.05 0.87/1.03 0.78/1.15 0.22/0.78 0.00/0.33 415.17 567.45 770.42 882.22 884.53 871.15 891.65

RanReal960 08.40 15.41/16.31 3.50/4.03 2.77/3.16 0.42/0.55 0.50/0.76 0.00/0.50 0.21/0.37 693.30 562.11 680.24 807.24 851.96 827.89 884.17

RanReal960 09.40 14.06/14.33 3.70/4.41 3.16/3.85 0.74/0.90 0.68/0.91 0.00/0.68 0.38/0.45 524.53 586.74 712.38 818.16 878.54 847.56 873.44

RanReal960 10.40 16.08/16.54 3.88/4.26 2.56/3.40 0.73/0.88 0.69/0.91 0.00/0.69 0.42/0.55 641.03 484.57 679.54 872.90 863.94 860.78 943.53

RanReal960 01.60 15.44/16.31 4.29/5.04 4.14/4.69 0.77/1.07 0.84/1.22 0.00/0.84 0.60/0.67 495.14 312.03 715.60 789.02 901.12 907.89 901.04

RanReal960 02.60 16.64/17.39 3.52/4.85 3.90/4.38 0.80/1.01 0.75/1.06 0.00/0.75 0.31/0.48 550.63 576.58 623.63 826.25 874.07 873.06 887.61

RanReal960 03.60 16.81/17.34 4.68/5.24 4.38/4.80 0.94/1.16 0.94/1.23 0.00/0.94 0.47/0.63 427.92 440.24 668.37 808.81 852.82 873.26 923.81

RanReal960 04.60 16.13/16.42 3.96/5.02 3.87/4.46 0.80/1.00 0.69/1.08 0.00/0.69 0.50/0.57 493.87 537.67 671.38 853.85 830.99 839.14 819.90

RanReal960 05.60 15.81/16.51 4.25/5.22 3.88/4.54 0.98/1.22 0.89/1.30 0.00/0.89 0.65/0.72 460.62 462.68 663.19 831.31 895.34 868.22 889.58

RanReal960 06.60 18.86/19.43 4.32/5.23 3.77/4.62 0.75/0.95 0.71/1.12 0.00/0.71 0.61/0.75 464.96 443.56 625.41 766.03 872.94 836.76 864.12

RanReal960 07.60 17.58/18.02 3.86/4.82 3.69/4.32 0.74/1.05 0.69/1.16 0.00/0.69 0.39/0.42 382.58 287.23 684.55 918.06 909.03 878.59 875.95

RanReal960 08.60 16.32/17.07 3.98/5.01 3.94/4.61 0.61/1.01 0.83/1.11 0.00/0.83 0.38/0.51 616.02 344.11 750.21 851.60 911.42 859.76 870.01

RanReal960 09.60 15.36/15.80 4.08/5.04 4.27/4.72 0.85/1.14 0.96/1.27 0.00/0.96 0.41/0.63 454.24 454.70 685.44 770.73 849.73 868.30 900.64

RanReal960 10.60 17.99/18.30 4.62/5.21 4.03/4.55 0.78/1.06 0.94/1.28 0.00/0.94 0.63/0.75 403.71 367.32 617.20 855.35 898.95 857.38 870.89

MDG-a 21 19.04/19.68 6.83/7.49 3.90/4.13 2.58/3.34 0.16/0.53 0.00/0.16 1.57/1.77 1113.87 1996.39 1997.42 1938.05 1518.30 1867.83 1872.28

MDG-a 22 17.88/18.08 15.08/15.73 3.79/4.52 1.47/2.31 0.48/0.60 0.00/0.48 1.43/1.52 1067.71 1999.48 1996.70 1840.87 1806.64 1801.35 1931.75

MDG-a 23 18.11/18.59 7.00/7.27 4.70/5.98 2.99/3.18 0.29/0.46 0.00/0.29 1.71/2.05 1082.92 1997.29 1997.69 1868.53 1741.74 1839.26 1937.18

MDG-a 24 19.44/20.01 14.49/15.82 4.05/5.03 2.62/3.06 0.34/0.50 0.00/0.34 1.71/2.02 911.13 1997.83 1996.65 1892.93 1697.71 1830.54 1903.31

MDG-a 25 19.39/19.80 7.04/7.43 3.89/6.04 2.23/3.37 2.76/0.59 0.00/2.76 1.88/2.95 1074.60 1996.68 1997.50 1829.42 1663.95 1870.12 1824.79

MDG-a 26 20.32/20.70 6.80/7.30 3.87/5.78 2.42/3.24 1.34/0.53 0.00/1.34 2.22/2.29 1149.10 1996.75 1997.02 1923.60 1665.89 1790.90 1926.98

MDG-a 27 18.21/18.60 15.07/15.49 6.56/6.93 1.66/2.30 0.43/0.69 0.00/0.43 1.12/1.35 854.07 1999.38 1998.81 1790.23 1635.81 1890.33 1837.59

MDG-a 28 18.77/19.11 14.77/15.25 3.85/4.87 2.35/3.11 0.41/0.62 0.00/0.41 1.77/2.03 924.16 1999.27 1997.85 1920.76 1681.61 1879.05 1733.96

MDG-a 29 18.88/19.25 6.84/7.22 5.25/5.87 1.76/2.94 0.48/0.69 0.00/0.48 1.48/1.67 1026.38 1996.99 1997.68 1903.37 1835.42 1859.38 1913.92

MDG-a 30 19.19/19.75 13.48/14.73 3.91/5.42 1.78/2.61 0.47/0.60 0.00/0.47 1.82/1.87 1028.09 1998.93 1998.08 1820.66 1692.74 1793.70 1867.39

MDG-a 31 19.03/19.38 14.08/14.97 3.77/4.95 2.50/3.09 0.48/0.66 0.00/0.48 1.86/1.98 1302.25 1998.60 1997.17 1912.22 1691.17 1789.28 1703.24

MDG-a 32 18.96/19.29 12.03/14.31 6.05/7.72 2.72/3.39 0.36/0.53 0.00/0.36 2.48/2.64 575.50 1998.49 1997.63 1888.87 1663.50 1853.43 1913.13

MDG-a 33 17.93/18.38 7.00/7.36 4.02/4.60 1.72/2.91 0.45/0.63 0.00/0.45 1.36/1.99 1160.48 1997.66 1997.26 1908.54 1816.25 1908.27 1960.62

MDG-a 34 19.42/19.71 12.60/14.76 5.62/6.16 2.60/3.35 0.39/0.57 0.00/0.39 2.06/2.34 630.93 1998.63 1996.86 1812.31 1759.61 1840.43 1820.16

MDG-a 35 19.01/19.27 15.24/16.00 3.85/4.02 2.39/2.88 0.33/0.64 0.00/0.33 2.11/2.38 1051.55 1998.13 1996.08 1810.68 1661.62 1797.99 1895.51

MDG-a 36 19.63/19.87 14.32/15.40 4.85/6.81 1.80/3.17 0.45/0.51 0.00/0.45 1.42/1.99 899.31 1998.23 1999.26 1838.15 1700.47 1842.45 1715.11

MDG-a 37 18.89/19.31 11.40/12.72 4.76/6.49 0.93/1.93 0.36/0.55 0.00/0.36 0.57/0.67 752.54 1997.55 1999.13 1851.54 1752.65 1833.76 1935.18

MDG-a 38 18.13/19.25 7.25/8.63 3.93/4.77 2.12/2.81 0.40/0.50 0.00/0.40 1.81/2.04 1105.56 1996.57 1997.76 1863.12 1769.98 1804.21 1909.01

MDG-a 39 18.91/19.41 6.89/7.25 4.91/5.84 2.47/3.21 0.36/0.58 0.00/0.36 1.39/2.14 1018.71 1997.23 1998.49 1901.77 1732.95 1887.26 1874.83

MDG-a 40 19.90/20.31 14.01/14.98 3.64/3.90 3.07/3.37 0.38/0.51 0.00/0.38 2.19/2.39 1097.38 1998.28 1997.11 1735.43 1770.49 1819.48 1864.35

Average 16.94/17.44 6.60/7.36 3.77/4.47 1.27/1.70 0.61/0.80 0.01/0.61 0.89/1.07 694.09 1115.02 1221.46 1251.36 1202.49 1240.53 1282.67
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Table 15. Comparison of FITS with the six state-of-art algorithms on handover minimization instances with n ≥ 100, where the objective
is to minimize the total cost function.

Name GevPR-HMP GQAP BRKGA IVNS GVNS SGVNS FITS

fbest favg fbest favg fbest favg fbest favg fbest favg fbest favg fbest favg

100 15 270001 19174.00 19174.00 19000.00 19114.80 19000.00 19533.20 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00

100 15 270002 22686.00 22686.00 22686.00 22805.60 23288.00 23478.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00

100 15 270003 14558.00 14558.00 14558.00 14568.80 14616.00 14655.20 14558.00 14558.00 15184.00 15184.00 15184.00 15184.00 14558.00 14558.00

100 15 270004 19762.00 19762.00 19700.00 19711.20 19882.00 20177.60 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00

100 15 270005 22892.00 22892.00 22746.00 22885.20 23092.00 23430.80 22746.00 22746.00 22894.00 22894.00 22894.00 22894.00 22746.00 22746.00

100 25 270001 36412.00 36665.20 36448.00 36608.00 36752.00 37107.20 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00

100 25 270002 39144.00 39199.20 38608.00 38677.20 39256.00 39515.60 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00

100 25 270003 32966.00 33098.00 32686.00 32717.60 32708.00 33356.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00

100 25 270004 35678.00 35801.20 35322.00 35433.20 35954.00 36068.40 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00

100 25 270005 36906.00 36911.20 36878.00 36968.00 37100.00 37363.60 36690.00 36690.00 37092.00 37092.00 37092.00 37092.00 36690.00 36690.00

100 50 270001 60922.00 61074.00 61172.00 61234.80 61554.00 61845.20 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00

100 50 270002 62046.00 62065.20 62022.00 62090.80 62524.00 62684.80 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00

100 50 270003 54618.00 54707.60 54596.00 54661.60 55192.00 55390.80 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00

100 50 270004 57894.00 57906.40 57894.00 57903.60 58208.00 58358.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00

100 50 270005 61088.00 61283.20 61318.00 61318.00 62784.00 63042.00 61080.00 61092.00 61080.00 61102.10 61080.00 61080.00 61080.00 61240.10

200 15 270001 81558.00 81915.20 82834.00 84327.20 81558.00 81946.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00

200 15 270002 89810.00 90949.60 90620.00 93462.00 90506.00 92372.40 89492.00 90407.40 89492.00 89863.60 89492.00 89725.20 89492.00 90201.50

200 15 270003 79232.00 79232.00 80980.00 81716.80 79548.00 79584.00 79232.00 79252.10 79232.00 79232.00 79232.00 79232.00 79232.00 79242.90

200 15 270004 78324.00 78324.00 80538.00 84737.60 80026.00 81019.20 78324.00 78549.10 78324.00 78376.10 78324.00 78324.00 78324.00 78376.10

200 15 270005 95998.00 96492.20 98826.00 100146.80 98830.00 99065.60 95680.00 96333.00 95734.00 95734.00 95734.00 95734.00 95680.00 96026.00

200 25 270001 133168.00 133674.00 138454.00 141961.60 140492.00 141938.80 133168.00 133168.00 133774.00 133774.00 133774.00 133774.00 133168.00 133168.00

200 25 270002 136038.00 137514.00 140066.00 141666.40 140690.00 141012.80 133778.00 133954.40 133876.00 133876.00 133876.00 133876.00 133778.00 133844.60

200 25 270003 139438.00 139962.40 144120.00 145647.60 143724.00 144409.60 136782.00 136801.50 136782.00 136802.70 136782.00 136792.50 136782.00 136870.10

200 25 270004 128554.00 129508.00 134054.00 136128.40 131786.00 133894.00 128246.00 128274.60 128472.00 128491.80 128472.00 128486.30 128246.00 128246.00

200 25 270005 148402.00 149298.80 154260.00 157307.20 152934.00 154275.20 147844.00 147844.00 148050.00 148050.00 148050.00 148050.00 147844.00 147844.00

200 50 270001 221550.00 221821.60 223096.00 223556.80 223098.00 224034.00 215388.00 215687.20 215388.00 215459.40 215388.00 215449.50 215388.00 215722.70

200 50 270002 218254.00 218761.20 219910.00 221346.80 219834.00 221131.20 212798.00 213005.10 213178.00 213251.80 213178.00 213239.50 212798.00 212946.20

200 50 270003 221500.00 222315.60 222404.00 223175.20 221110.00 221568.00 214364.00 214678.60 214364.00 214451.10 214364.00 214394.80 214364.00 214834.70

200 50 270004 212044.00 212626.80 212544.00 213880.80 213170.00 213509.20 206476.00 206985.40 207254.00 270343.60 207254.00 207301.70 206476.00 206692.90

200 50 270005 231890.00 232938.00 236136.00 238228.80 237156.00 237939.60 229918.00 230107.30 230484.00 230630.30 230484.00 230543.60 229900.00 229980.40

400 15 270001 372694.00 375429.20 456158.00 475012.00 375650.00 378718.00 369048.00 373670.80 369048.00 370847.20 369048.00 370787.50 369048.00 371752.40

400 15 270002 370274.00 373304.80 460232.00 465669.20 383096.00 386282.80 365878.00 370147.60 366062.00 369675.00 366062.00 368351.10 365878.00 369214.50

400 15 270003 358684.00 360152.80 448830.00 456513.60 366314.00 369552.80 352588.00 358234.90 353078.00 355399.30 353078.00 355002.50 352588.00 354776.20

400 15 270004 334430.00 336826.40 406834.00 447753.20 346282.00 349110.00 331888.00 339014.80 331888.00 335504.80 331888.00 337685.30 331888.00 337899.40

400 15 270005 361904.00 365974.00 457274.00 476186.00 377094.00 380204.40 360422.00 364127.30 360714.00 364176.50 360714.00 362735.10 360422.00 362651.80

400 25 270001 570852.00 571930.00 663908.00 694715.60 579130.00 584584.80 545662.00 547000.40 545674.00 547537.20 545228.00 546479.10 545540.00 547541.30

400 25 270002 544568.00 547953.60 658440.00 679772.40 554840.00 560692.00 528470.00 530441.40 528470.00 530204.70 528470.00 529495.00 528470.00 529055.90

400 25 270003 548000.00 554179.60 667982.00 680754.80 553162.00 555433.20 525016.00 527990.20 525016.00 527434.30 525016.00 526789.10 524678.00 526193.40

400 25 270004 501750.00 504474.40 607672.00 633011.20 516416.00 517828.00 481660.00 482858.10 481920.00 482922.10 481994.00 483238.40 481436.00 481994.10

400 25 270005 556044.00 561315.20 679848.00 703440.00 585070.00 589444.00 548100.00 548744.40 548450.00 549737.80 548450.00 549170.50 548100.00 549106.70

400 50 270001 851412.00 854656.00 951882.00 957526.00 879438.00 881239.60 824868.00 825682.50 826252.00 826962.10 825956.00 826809.80 824656.00 825547.00

400 50 270002 845496.00 848217.60 949562.00 953687.60 874226.00 877662.00 822562.00 824563.50 824468.00 826207.90 823762.00 825441.00 822336.00 824048.70

400 50 270003 819242.00 824118.80 919140.00 927517.60 843242.00 850384.80 801722.00 802977.20 802936.00 804269.90 801824.00 803537.30 801472.00 802646.30

400 50 270004 774564.00 777953.60 878912.00 885893.20 806690.00 810186.80 760514.00 761484.60 760044.00 762079.10 760044.00 761455.70 760232.00 763379.60

400 50 270005 854726.00 857133.20 940358.00 950535.60 882060.00 885058.80 828398.00 829882.60 828902.00 829946.80 828450.00 829578.20 828398.00 830872.10

#Best 9 4 11 0 2 0 37 18 23 15 24 25 43 30

p-value 1.97e-9 1.68e-8 5.51e-9 1.97e-
11

5.47e-11 1.97e-
11

0.00 0.02 1.19e-5 0.08 7.44e-5 0.38
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Table 16. Comparison between FITS and six state-of-the-art algorithms on the handover minimization instances with n ≥ 100.

Devbest/Devavg(%) tavg

Name GevPR-
HMP

GQAP BRKGA IVNS GVNS SGVNS FITS IVNS GVNS SGVNS FITS

100 15 270001 0.92/0.92 0.00/0.60 0.00/2.81 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.03 0.24 0.28 3.84

100 15 270002 0.00/0.00 0.00/0.53 2.65/3.49 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.54 0.39 0.49 25.06

100 15 270003 0.00/0.00 0.00/0.07 0.40/0.67 0.00/0.00 4.30/4.30 4.30/4.30 0.00/0.00 0.08 0.06 0.10 0.14

100 15 270004 0.31/0.31 0.00/0.06 0.92/2.42 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.30 0.13 0.11 2.03

100 15 270005 0.64/0.64 0.00/0.61 1.52/3.01 0.00/0.00 0.65/0.65 0.65/0.65 0.00/0.00 1.62 0.24 0.36 11.35

100 25 270001 0.00/0.70 0.10/0.54 0.93/1.91 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.54 0.64 0.82 4.38

100 25 270002 1.39/1.53 0.00/0.18 1.68/2.35 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.62 1.33 0.66 5.57

100 25 270003 0.86/1.26 0.00/0.10 0.07/2.05 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 5.42 1.40 0.86 12.78

100 25 270004 1.01/1.36 0.00/0.31 1.79/2.11 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 6.18 0.13 0.21 19.05

100 25 270005 0.59/0.60 0.51/0.76 1.12/1.84 0.00/0.00 1.10/1.10 1.10/1.10 0.00/0.00 6.89 0.15 0.23 14.61

100 50 270001 0.00/0.25 0.41/0.51 1.04/1.52 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 9.19 0.45 0.48 25.75

100 50 270002 0.04/0.07 0.00/0.11 0.81/1.07 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 10.47 0.87 0.71 7.41

100 50 270003 0.04/0.20 0.00/0.12 1.09/1.46 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 7.61 0.68 0.59 8.70

100 50 270004 0.00/0.02 0.00/0.02 0.54/0.80 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 5.63 1.26 0.05 14.18

100 50 270005 0.01/0.33 0.39/0.39 2.79/3.21 0.00/0.02 0.00/0.04 0.00/0.00 0.00/0.26 9.45 1.42 0.43 42.71

200 15 270001 0.00/0.44 1.56/3.40 0.00/0.48 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 25.19 2.23 2.77 67.35

200 15 270002 0.36/1.63 1.26/4.44 1.13/3.22 0.00/1.02 0.00/0.42 0.00/0.26 0.00/0.79 70.30 20.16 55.81 116.10

200 15 270003 0.00/0.00 2.21/3.14 0.40/0.44 0.00/0.03 0.00/0.00 0.00/0.00 0.00/0.01 38.27 2.08 1.85 13.10

200 15 270004 0.00/0.00 2.83/8.19 2.17/3.44 0.00/0.29 0.00/0.07 0.00/0.00 0.00/0.07 48.99 13.94 20.44 43.07

200 15 270005 0.33/0.85 3.29/4.67 3.29/3.54 0.00/0.68 0.06/0.06 0.06/0.06 0.00/0.36 11.33 29.97 31.91 40.97

200 25 270001 0.00/0.38 3.97/6.60 5.50/6.59 0.00/0.00 0.46/0.46 0.46/0.46 0.00/0.00 41.78 24.60 54.73 83.74

200 25 270002 1.69/2.79 4.70/5.90 5.17/5.41 0.00/0.13 0.07/0.07 0.07/0.07 0.00/0.05 87.71 47.07 19.05 91.89

200 25 270003 1.94/2.33 5.36/6.48 5.08/5.58 0.00/0.01 0.00/21.95 0.00/0.01 0.00/0.06 53.89 86.94 51.56 103.30

200 25 270004 0.24/0.98 4.53/6.15 2.76/4.40 0.00/0.02 0.18/0.19 0.18/0.19 0.00/0.00 49.99 35.98 19.00 92.27

200 25 270005 0.38/0.98 4.34/6.40 3.44/4.35 0.00/0.00 0.14/0.14 0.14/0.14 0.00/0.00 9.64 6.86 5.17 78.63

200 50 270001 2.86/2.99 3.58/3.79 3.58/4.01 0.00/0.14 0.00/0.03 0.00/0.03 0.00/0.16 76.15 62.88 65.42 87.34

200 50 270002 2.56/2.80 3.34/4.02 3.31/3.92 0.00/0.10 0.18/0.21 0.18/0.21 0.00/0.07 69.51 25.08 14.92 105.89

200 50 270003 3.33/3.71 3.75/4.11 3.15/3.36 0.00/0.15 0.00/0.04 0.00/0.01 0.00/0.22 69.87 46.94 83.88 101.50

200 50 270004 2.70/2.98 2.94/3.59 3.24/3.41 0.00/0.25 0.38/30.93 0.38/0.40 0.00/0.11 81.66 64.90 55.80 111.74

200 50 270005 0.87/1.32 2.71/3.62 3.16/3.50 0.01/0.09 0.25/0.32 0.25/0.28 0.00/0.03 86.92 65.05 68.95 131.04

400 15 270001 0.99/1.73 23.60/28.71 1.79/2.62 0.00/1.25 0.00/0.49 0.00/0.47 0.00/0.73 184.94 114.10 154.72 218.52

400 15 270002 1.20/2.03 25.79/27.27 4.71/5.58 0.00/1.17 0.05/1.04 0.05/0.68 0.00/0.91 197.33 195.42 162.95 230.06

400 15 270003 1.73/2.15 27.30/29.48 3.89/4.81 0.00/1.60 0.14/0.80 0.14/0.68 0.00/0.62 156.99 73.55 125.33 253.96

400 15 270004 0.77/1.49 22.58/34.91 4.34/5.19 0.00/2.15 0.00/1.09 0.00/1.75 0.00/1.81 245.49 123.96 171.49 226.90

400 15 270005 0.41/1.54 26.87/32.12 4.63/5.49 0.00/1.03 0.08/1.04 0.08/0.64 0.00/0.62 234.97 136.54 243.64 271.41

400 25 270001 4.70/4.90 21.77/27.42 6.22/7.22 0.08/0.33 0.08/0.42 0.00/0.23 0.06/0.42 239.15 124.71 127.27 280.77

400 25 270002 3.05/3.69 24.59/28.63 4.99/6.10 0.00/0.37 0.00/0.33 0.00/0.19 0.00/0.11 206.04 109.35 114.10 263.82

400 25 270003 4.45/5.62 27.31/29.75 5.43/5.86 0.06/0.63 0.06/0.53 0.06/0.40 0.00/0.29 213.34 176.03 182.30 259.13

400 25 270004 4.22/4.79 26.22/31.48 7.27/7.56 0.05/0.30 0.10/0.31 0.12/0.37 0.00/0.12 209.56 108.17 142.02 274.96

400 25 270005 1.45/2.41 24.04/28.34 6.75/7.54 0.00/0.12 0.06/0.30 0.06/0.20 0.00/0.18 243.63 192.24 215.43 295.26

400 50 270001 3.24/3.64 15.43/16.11 6.64/6.86 0.03/0.12 0.19/0.28 0.16/0.26 0.00/0.11 260.81 214.55 244.55 255.22

400 50 270002 2.82/3.15 15.47/15.97 6.31/6.73 0.03/0.27 0.26/0.47 0.17/0.38 0.00/0.21 284.52 228.68 229.22 280.60

400 50 270003 2.22/2.83 14.68/15.73 5.21/6.10 0.03/0.19 0.18/0.35 0.04/0.26 0.00/0.15 302.17 197.58 258.58 267.40

400 50 270004 1.91/2.36 15.64/16.56 6.14/6.60 0.06/0.19 0.00/0.27 0.00/0.19 0.02/0.44 265.09 228.35 230.35 294.04

400 50 270005 3.18/3.47 13.52/14.74 6.48/6.84 0.00/0.18 0.06/0.19 0.01/0.14 0.00/0.30 267.93 210.97 249.88 284.11

Average 1.32/1.74 8.37/10.15 3.19/3.94 0.01/0.28 0.20/1.53 0.19/0.33 0.00/0.20 97.82 66.18 75.77 120.48
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Table 17
Comparison between FITS and MA on two sets of CCP instances (RanReal and
DB).

Name FITS MA

fbest favg tavg(s) fbest favg tavg(s)

Sparse82 01 1342.17 1342.17 7.70 1342.17 1342.17 9.81

Sparse82 02 1306.64 1306.64 15.92 1306.64 1306.64 14.24

Sparse82 03 1353.94 1353.94 3.88 1353.94 1353.94 4.86

Sparse82 04 1291.22 1291.22 45.02 1291.22 1291.22 43.75

Sparse82 05 1352.35 1352.35 1.13 1352.35 1352.35 1.26

Sparse82 06 1354.61 1354.61 1.63 1354.61 1354.61 1.92

Sparse82 07 1266.94 1266.94 4.13 1266.94 1266.94 4.42

Sparse82 08 1393.02 1393.02 3.59 1393.02 1393.02 3.36

Sparse82 09 1294.12 1294.12 2.75 1294.12 1294.12 2.60

Sparse82 10 1356.98 1356.98 0.89 1356.98 1356.98 0.99

RanReal240 01 225003.53 224926.96 2348.59 225003.53 224937.30 2348.57

RanReal240 02 204624.36 204525.77 1580.11 204624.36 204553.10 1948.50

RanReal240 03 198976.88 198941.44 1572.29 199079.37 198956.17 2276.32

RanReal240 04 225667.77 225542.39 1151.94 225683.17 225547.69 2524.26

RanReal240 05 195621.68 195480.29 1631.35 195621.68 195481.00 1943.62

RanReal240 06 216747.32 216697.36 1667.33 216747.39 216699.09 1945.37

RanReal240 07 209316.85 209245.15 1562.66 209305.70 209213.53 1642.42

RanReal240 08 205246.82 205175.77 1768.87 205246.82 205134.15 2146.29

RanReal240 09 209186.90 209145.93 2038.81 209186.90 209152.19 2123.53

RanReal240 10 193062.60 192969.92 1856.91 193062.60 192972.14 1945.36

RanReal240 11 204722.75 204627.27 1975.32 204722.75 204635.30 1990.59

RanReal240 12 201117.11 201022.63 1197.68 201117.11 201037.08 2295.96

RanReal240 13 202338.43 202312.16 1218.02 202338.43 202312.50 1613.35

RanReal240 14 228870.89 228657.39 2027.09 228870.89 228601.66 1278.33

RanReal240 15 191263.28 191149.81 1653.79 191263.28 191177.81 2281.96

RanReal240 16 204072.57 203960.10 1710.90 204081.46 203971.34 1986.64

RanReal240 17 195623.04 195532.19 1791.09 195638.95 195544.67 2031.51

RanReal240 18 195127.57 195035.21 1887.10 195167.12 195070.91 2355.17

RanReal240 19 199307.33 199191.03 1317.83 199307.33 199175.59 1848.30

RanReal240 20 212321.06 212234.67 1798.98 212322.48 212236.65 2139.52

RanReal480 01 556259.42 555579.98 3785.15 556401.65 555586.79 5465.92

RanReal480 02 511504.92 510798.1 4735.30 511832.51 511033.52 5928.92

RanReal480 03 497973.87 497377.76 4213.93 498197.75 497467.34 6199.20

RanReal480 04 523131.64 522494.45 4786.27 523428.57 522493.58 6273.48

RanReal480 05 484701.85 483989.96 3463.80 484856.17 484089.84 5828.84

RanReal480 06 534897.14 534283.07 4402.99 535110.60 534324.91 5859.55

RanReal480 07 546052.12 545744.17 4340.06 546671.53 545774.12 5779.21

RanReal480 08 533042.97 532676.82 4098.46 533593.65 532710.69 5438.86

RanReal480 09 557169.08 556629.74 4028.24 557558.00 556641.92 5221.96

RanReal480 10 520714.86 519959.24 3871.66 520657.09 519841.12 5395.04

RanReal480 11 524479.86 524065.89 4859.36 524356.65 524044.88 5087.50

RanReal480 12 502547.16 502141.47 4282.61 502888.85 502143.97 5675.84

RanReal480 13 535381.87 535028.27 3833.55 536024.76 535078.71 5648.80

RanReal480 14 514731.74 514378.83 4568.84 515137.95 514415.58 5395.97

RanReal480 15 518140.43 517471.49 4449.48 518686.16 517480.73 5247.89

RanReal480 16 550260.76 549765.36 4074.76 550566.81 549796.27 5959.42

RanReal480 17 538339.63 537969.48 4540.85 538584.62 537997.22 5623.36

RanReal480 18 526419.74 525880.41 4768.13 527089.59 526065.80 5575.99

RanReal480 19 522972.89 522598.39 5210.14 523302.33 522624.73 5832.21

RanReal480 20 519148.25 518650.30 4097.54 519626.64 518717.70 6164.32

#Best 3 7 25 33

p-value 3.22e-5 3.94e-5
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Table 18
Comparison between FITS and MA on the large handover minimization instances
with n ≥ 100. For direct comparisons, we present the results in the minimization
form.

Name FITS MA

fbest favg tavg(s) fbest favg tavg(s)

100 15 270001 19000 19000.00 7.59 19000 19000.00 4.52

100 15 270002 22686 22686.00 143.84 22686 22686.00 70.77

100 15 270003 14558 14558.00 0.20 14558 14558.00 0.08

100 15 270004 19700 19700.00 3.34 19700 19700.00 0.84

100 15 270005 22746 22746.00 15.68 22746 22746.00 4.78

100 25 270001 36412 36412.00 5.73 36412 36412.00 2.53

100 25 270002 38608 38608.00 72.92 38608 38608.00 11.48

100 25 270003 32686 32686.00 84.02 32686 32686.00 28.65

100 25 270004 35322 35322.00 20.94 35322 35322.00 10.55

100 25 270005 36690 36690.00 9.81 36690 36690.00 6.19

100 50 270001 60922 60922.00 103.80 60922 60922.00 21.03

100 50 270002 62022 62022.00 42.17 62022 62022.00 8.20

100 50 270003 54596 54596.00 94.73 54596 54596.00 4.43

100 50 270004 57894 57894.00 121.33 57894 57894.00 55.42

100 50 270005 61080 61099.90 620.30 61080 61080.00 158.34

200 15 270001 81558 81558.00 544.44 81558 81558.00 348.50

200 15 270002 89492 90134.50 966.93 89492 89653.40 628.38

200 15 270003 79232 79232.00 165.95 79232 79232.00 56.59

200 15 270004 78324 78372.30 345.14 78324 78324.00 344.47

200 15 270005 95680 96023.90 398.99 95680 95680.00 115.01

200 25 270001 133168 133168.00 512.23 133168 133168.00 206.01

200 25 270002 133778 133818.20 742.93 133778 133829.00 686.27

200 25 270003 136782 136828.10 885.09 136782 136796.70 870.38

200 25 270004 128246 128246.00 1341.78 128246 128246.00 767.18

200 25 270005 147844 147844.00 132.42 147844 147844.00 189.92

200 50 270001 215388 215560.80 962.60 215388 215616.40 802.60

200 50 270002 212798 212848.70 731.01 212798 212858.40 1055.20

200 50 270003 214364 214555.20 1237.59 214364 214550.10 1333.02

200 50 270004 206476 206574.40 1097.72 206476 206595.90 797.46

200 50 270005 229900 229936.70 757.27 229900 229945.20 1044.29

400 15 270001 369048 371437.90 1659.67 369048 369317.60 1904.87

400 15 270002 365878 368928.70 2880.39 365878 366497.10 1558.38

400 15 270003 352588 353787.40 1394.43 352588 352600.70 1101.44

400 15 270004 331888 336731.60 1517.02 331888 332017.50 1631.73

400 15 270005 360422 361852.50 2456.41 360422 360949.90 2080.04

400 25 270001 545556 546421.40 2447.34 545540 546420.60 2447.35

400 25 270002 528470 528792.60 2686.55 528470 528862.50 2615.13

400 25 270003 524678 525339.10 2455.44 524678 525226.00 2204.49

400 25 270004 481436 481925.10 2715.72 481436 481974.50 2351.65

400 25 270005 548100 548123.60 2104.69 548100 548199.70 1808.02

400 50 270001 824604 825539.90 2749.00 824518 825488.10 3086.45

400 50 270002 822336 823753.30 3002.52 822336 823699.90 3006.55

400 50 270003 801432 802627.00 2814.66 801346 802484.30 3022.16

400 50 270004 760232 762474.40 3003.92 760232 761699.40 2924.69

400 50 270005 828398 829700.80 2739.78 828398 829226.00 3801.92

#Best 0 8 3 19

p-value 0.08 0.05
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Table 19
Comparison between FITS and its two underlying components FLS and InfLS on
the RanReal benchmark set.

Name FITS FLS InfLS

fbest favg fbest favg fbest favg

RanReal240 01 224941.48 224802.06 224941.28 224700.99 224673.38 224351.31

RanReal240 02 204624.36 204359.38 204624.36 204273.94 204191.72 203800.45

RanReal240 03 198954.91 198799.84 198896.78 198715.24 198612.31 198358.12

RanReal240 04 225627.16 225364.97 225627.16 225242.26 225382.26 224953.72

RanReal240 05 195564.48 195320.28 195472.49 195298.72 195165.72 194470.36

RanReal240 06 216747.32 216487.02 216736.00 216422.13 216244.78 215840.77

RanReal240 07 209305.70 209029.23 209286.63 208984.08 208904.93 208538.21

RanReal240 08 205246.82 204961.05 205246.82 204971.43 204867.72 204447.79

RanReal240 09 209159.16 208952.48 209073.60 208877.53 208782.77 208445.36

RanReal240 10 192986.21 192811.13 193044.16 192762.94 192765.27 192429.05

RanReal240 11 204722.75 204559.39 204722.75 204491.34 204458.26 204014.37

RanReal240 12 201117.11 200797.67 201074.54 200874.41 200687.09 200360.62

RanReal240 13 202335.99 202139.57 202335.99 202107.26 201879.46 201616.58

RanReal240 14 228870.89 228554.78 228844.44 228457.67 228316.81 227946.95

RanReal240 15 191255.87 190923.28 191202.77 190903.62 190761.09 190372.67

RanReal240 16 204054.99 203710.39 204019.08 203706.22 203513.73 203196.32

RanReal240 17 195561.36 195243.32 195447.87 195225.20 195223.74 194857.78

RanReal240 18 195100.39 194872.13 195100.39 194864.12 194689.78 194398.32

RanReal240 19 199225.98 199040.43 199216.94 198997.54 199006.08 198450.68

RanReal240 20 212268.52 212049.85 212268.52 212015.41 211849.93 211537.55

RanReal480 01 555489.92 554376.54 555300.10 554228.16 552864.61 551299.72

RanReal480 02 511280.50 509757.15 510466.38 509449.52 509294.32 508336.14

RanReal480 03 497295.19 496059.50 496683.63 495938.74 495664.06 494292.73

RanReal480 04 522305.16 521062.13 522000.18 520565.30 520451.39 519325.61

RanReal480 05 484084.66 482867.74 483514.31 482241.30 481725.02 480777.24

RanReal480 06 533991.27 533036.36 533843.95 532409.06 531163.12 530249.35

RanReal480 07 545470.73 544651.12 545209.27 544128.41 542724.00 541454.69

RanReal480 08 532417.42 531667.91 532357.71 531527.82 529288.64 528038.04

RanReal480 09 556868.85 555634.40 556552.85 555295.47 554085.91 553165.52

RanReal480 10 520257.54 518071.71 519857.07 518083.48 517835.50 516098.53

RanReal480 11 523991.29 522816.94 523587.47 522613.58 521964.67 520488.83

RanReal480 12 501915.56 500776.79 501683.69 500647.73 500922.44 499723.69

RanReal480 13 535025.51 533823.79 534867.67 533594.29 531960.39 530949.44

RanReal480 14 514107.62 513053.25 514039.43 512915.41 512043.79 510844.33

RanReal480 15 517205.02 516018.38 518140.43 515941.80 514508.48 513428.89

RanReal480 16 549552.63 548462.13 549824.00 548211.77 547509.72 546087.39

RanReal480 17 537924.55 536745.39 537702.09 536639.04 534980.65 533909.81

RanReal480 18 525822.76 524712.42 525926.74 524565.69 523702.51 522359.71

RanReal480 19 522316.22 521267.22 522291.27 520957.84 520173.80 519077.31

RanReal480 20 518349.10 517430.77 518645.84 517467.88 515626.91 515025.41

#Best 35 36 12 4 0 0

p-value 6.23e-5 4.20e-7 2.54e-10 2.54e-10
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Table 20
Comparison between FITS and its variation FITS FI (using the first-improvement
strategy) on the RanReal benchmark.

Name FITS FITS FI

fbest favg tavg fbest favg tavg

RanReal240 01 224941.48 224802.06 149.09 224182.68 223791.06 97.10

RanReal240 02 204624.36 204359.38 150.75 204024.55 203748.76 115.86

RanReal240 03 198954.91 198799.84 169.95 198312.80 198070.31 107.81

RanReal240 04 225627.16 225364.97 118.58 224995.76 224412.34 116.39

RanReal240 05 195564.48 195320.28 132.33 195102.26 194867.72 117.86

RanReal240 06 216747.32 216487.02 155.99 215788.46 215440.78 99.28

RanReal240 07 209305.70 209029.23 144.96 208530.22 208114.22 96.03

RanReal240 08 205246.82 204961.05 124.22 204428.30 204277.73 108.99

RanReal240 09 209159.16 208952.48 141.69 208338.57 208175.46 116.96

RanReal240 10 192986.21 192811.13 134.20 192232.44 192071.19 120.39

RanReal240 11 204722.75 204559.39 129.91 204217.59 204001.29 89.54

RanReal240 12 201117.11 200797.67 132.03 200498.08 200344.22 78.75

RanReal240 13 202335.99 202139.57 131.34 201813.49 201615.62 69.13

RanReal240 14 228870.89 228554.78 135.87 228231.53 228117.87 92.49

RanReal240 15 191255.87 190923.28 131.83 190537.12 190180.38 81.39

RanReal240 16 204054.99 203710.39 89.11 203428.14 203258.65 100.98

RanReal240 17 195561.36 195243.32 171.03 194568.09 194356.29 64.85

RanReal240 18 195100.39 194872.13 152.83 194458.12 194254.79 89.27

RanReal240 19 199225.98 199040.43 98.09 198479.56 198337.34 102.39

RanReal240 20 212268.52 212049.85 115.38 211474.47 211194.85 66.20

RanReal480 01 555489.92 554376.54 340.60 551254.15 550147.26 236.79

RanReal480 02 511280.50 509757.15 355.59 507215.91 506193.99 251.43

RanReal480 03 497295.19 496059.50 352.06 494017.02 493425.88 251.20

RanReal480 04 522305.16 521062.13 399.51 516643.64 515925.45 112.97

RanReal480 05 484084.66 482867.74 335.84 480982.54 480210.46 240.39

RanReal480 06 533991.27 533036.36 390.06 530142.87 529021.63 230.79

RanReal480 07 545470.73 544651.12 390.23 541115.04 539994.76 258.65

RanReal480 08 532417.42 531667.91 380.64 529566.14 527736.78 223.86

RanReal480 09 556868.85 555634.40 383.67 551863.24 551045.16 204.35

RanReal480 10 520257.54 518071.71 328.85 517484.26 515898.39 272.95

RanReal480 11 523991.29 522816.94 383.65 520367.63 519570.84 204.96

RanReal480 12 501915.56 500776.79 347.32 498568.75 498030.75 227.79

RanReal480 13 535025.51 533823.79 330.84 530707.31 529726.48 147.77

RanReal480 14 514107.62 513053.25 352.07 510789.76 509613.70 252.60

RanReal480 15 517205.02 516018.38 387.02 514108.83 513515.25 195.55

RanReal480 16 549552.63 548462.13 392.78 543160.92 542154.24 252.46

RanReal480 17 537924.55 536745.39 360.93 533616.73 532759.09 254.00

RanReal480 18 525822.76 524712.42 320.60 521450.47 520006.79 108.58

RanReal480 19 522316.22 521267.22 380.69 518719.33 517865.80 214.04

RanReal480 20 518349.10 517430.77 353.52 514528.29 514097.85 224.97

#Best 40 40 0 0

p-value 2.54e-10 2.54e-10
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Table 21
Comparison of two MA versions using uniform and cluster-based crossover respec-
tively on the RanReal benchmark.

Name Uniform CX Cluster-based CX

fbest favg tavg(s) fbest favg tavg(s)

RanReal240 01 224921.21 224821.36 1295.14 225003.53 224937.30 2348.57

RanReal240 02 204624.36 204493.54 1952.30 204624.36 204553.10 1948.50

RanReal240 03 198981.64 198893.17 1943.37 199079.37 198956.17 2276.32

RanReal240 04 225566.15 225454.43 1480.25 225683.17 225547.69 2524.26

RanReal240 05 195533.32 195428.43 1598.60 195621.68 195481.00 1943.62

RanReal240 06 216747.32 216618.54 1889.24 216747.39 216699.09 1945.37

RanReal240 07 209288.75 209194.38 1710.89 209305.70 209213.53 1642.42

RanReal240 08 205246.82 205108.07 1645.73 205246.82 205134.15 2146.29

RanReal240 09 209186.90 209094.98 1974.60 209186.90 209152.19 2123.53

RanReal240 10 192986.21 192903.33 2459.53 193062.60 192972.14 1945.36

RanReal240 11 204680.80 204587.50 1672.03 204722.75 204635.30 1990.59

RanReal240 12 201117.11 200944.04 1924.83 201117.11 201037.08 2295.96

RanReal240 13 202338.43 202281.95 1813.21 202338.43 202312.50 1613.35

RanReal240 14 228646.52 228555.05 1560.60 228870.89 228601.66 1278.33

RanReal240 15 191230.33 191094.96 1835.09 191263.28 191177.81 2281.96

RanReal240 16 203909.40 203808.95 1537.05 204081.46 203971.34 1986.64

RanReal240 17 195638.95 195464.27 1929.86 195638.95 195544.67 2031.51

RanReal240 18 195100.39 194968.12 1876.05 195167.12 195070.91 2355.17

RanReal240 19 199307.33 199162.91 1660.33 199307.33 199175.59 1848.30

RanReal240 20 212268.52 212159.63 1373.99 212322.48 212236.65 2139.52

RanReal480 01 555377.78 554896.75 3868.70 556401.65 555586.79 5465.92

RanReal480 02 511021.69 510398.02 4410.56 511832.51 511033.52 5928.92

RanReal480 03 497675.92 496992.13 4234.89 498197.75 497467.34 6199.20

RanReal480 04 522425.81 521851.94 3692.03 523428.57 522493.58 6273.48

RanReal480 05 484496.11 483529.47 3896.52 484856.17 484089.84 5828.84

RanReal480 06 534140.09 533526.58 4560.41 535110.60 534324.91 5859.55

RanReal480 07 545781.35 545111.15 4012.66 546671.53 545774.12 5779.21

RanReal480 08 532566.57 532224.38 3723.32 533593.65 532710.69 5438.86

RanReal480 09 556523.87 556084.63 4458.78 557558.00 556641.92 5221.96

RanReal480 10 520148.06 519300.68 4485.14 520657.09 519841.12 5395.04

RanReal480 11 524676.35 523771.15 3951.08 524356.65 524044.88 5087.50

RanReal480 12 502329.51 501725.88 4251.32 502888.85 502143.97 5675.84

RanReal480 13 535017.14 534562.12 4163.93 536024.76 535078.71 5648.80

RanReal480 14 514814.34 514085.50 4657.32 515137.95 514415.58 5395.97

RanReal480 15 517835.64 517051.95 4075.11 518686.16 517480.73 5247.89

RanReal480 16 550021.73 549159.13 3883.47 550566.81 549796.27 5959.42

RanReal480 17 538667.77 537830.76 3244.27 538584.62 537997.22 5623.36

RanReal480 18 526142.15 525543.15 4510.03 527089.59 526065.80 5575.99

RanReal480 19 522705.19 521971.51 3469.05 523302.33 522624.73 5832.21

RanReal480 20 518857.89 518260.21 3271.27 519626.64 518717.70 6164.32

#Best 2 0 31 40

p-value 4.46e-7 2.54e-10
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Table 22
Computational results on small handover minimization instances. For direct com-
parison, the results are converted into the minimization form.

Name FITS

fbest favg tavg(s)

20 5 270001 540 540.00 0.00

20 5 270002 54 54.00 0.00

20 5 270003 816 816.00 0.00

20 5 270004 126 126.00 0.00

20 5 270005 372 372.00 0.00

20 10 270001 2148 2148.00 0.00

20 10 270002 1426 1426.00 0.00

20 10 270003 2458 2458.00 0.00

20 10 270004 1570 1570.00 0.00

30 5 270001 772 772.00 0.00

30 5 270002 136 136.00 0.00

30 5 270003 920 920.00 0.01

30 5 270004 52 52.00 0.00

30 5 270005 410 410.00 0.01

30 10 270001 3276 3276.00 0.00

30 10 270002 1404 1404.00 0.00

30 10 270003 2214 2214.00 0.00

30 10 270004 2150 2150.00 0.02

30 10 270005 2540 2540.00 0.04

30 15 270001 6178 6178.00 0.01

30 15 270002 4042 4042.00 0.00

30 15 270003 4126 4126.00 0.00

30 15 270004 3920 3920.00 0.01

40 5 270001 610 610.00 0.07

40 5 270002 136 136.00 0.05

40 5 270003 234 234.00 0.12

40 5 270004 232 232.00 1.30

40 5 270005 774 774.00 0.00

40 10 270001 4544 4544.00 0.08

40 10 270002 2068 2068.00 0.00

40 10 270003 2090 2090.00 0.01

40 10 270004 1650 1650.00 0.00

40 10 270005 4316 4316.00 0.01

40 15 270001 8646 8646.00 0.24

40 15 270002 4586 4586.00 0.26

40 15 270003 5396 5396.00 0.02

40 15 270004 4800 4800.00 0.00

40 15 270005 6272 6272.00 0.05
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