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Abstract

Given a weighted graph, the capacitated clustering problem (CCP) is to partition a
set of nodes into a given number of distinct clusters (or groups) with restricted ca-
pacities, while maximizing the sum of edge weights corresponding to two nodes from
the same cluster. CCP is an NP-hard problem with many relevant applications. This
paper proposes two effective algorithms for CCP: a Tabu Search (denoted as FITS)
that alternates between exploration in feasible and infeasible search space regions,
and a Memetic Algorithm (MA) that combines FITS with a dedicated cluster-based
crossover. Extensive computational results on five sets of 183 benchmark instances
from the literature indicate that the proposed FITS competes favorably with the
state-of-the-art algorithms. Additionally, an experimental comparison between FITS
and MA under an extended time limit demonstrates that further improvements in
terms of the solution quality can be achieved with MA in most cases. We also an-
alyze several essential components of the proposed algorithms to understand their
importance to the success of these approaches.
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1 Introduction

Given a weighted graph G = (V, E') where V' is a set of n nodes and F is a set
of edges, let w; > 0 be the weight of node i € V and let ¢;; ({7,j} € E) be the
edge weight between nodes 7 and j (¢;; = 0, if {i,j} ¢ E). The Capacitated
Clustering Problem (CCP) is to partition V' into a given number p (p < n) of
disjoint clusters or groups such that the sum of node weights in each cluster is
constrained by an upper and a lower capacity limit, while maximizing the sum
of edge weights whose two associated endpoints belong to the same cluster.

Formally, let the binary variable X;, take the value 1 if node i is assigned to
group g (g € {1,2,...,p}), and 0 otherwise. CCP can then be expressed as the
following quadratic program [7,10]:

p n—1 n
maximize SN @iXi X, (1)
g=1i=1 j=i+1
P
subject to Y X;; =1, VieV (2)
g=1
Lg S szng g Ug> vy € {1727 ap} (3>
i=1
Xig €10, 1}, VieV,ge{l,2,..,p} (4)

Constraint (2) guarantees that every node is assigned to exactly one cluster,
while constraint (3) ensures that the minimum capacity (L,) and the maxi-
mum capacity (U,) requirements of each cluster are satisfied.

Note that CCP is closely related to the Graph Partitioning Problem (GPP)
[4,5,16] where the lower and the upper capacity limits of the clusters are
respectively set to 0 and a predetermined imbalance parameter. Moreover,
the Maximally Diverse Grouping Problem (MDGP) [6,17,22,25,34,37,38] is a
special case of CCP, when G is a complete graph with unit cost node weights.
Consequently, CCP is an NP-hard problem as MDGP is known to be NP-
hard. Furthermore, CCP is equivalent to the Handover Minimization Problem
(HMP) in mobility networks [29] where the objective is to minimize the sum
of weights of the edges with endpoints in different clusters. In addition to
its application in mobility networks, CCP arises in several different contexts
including mail delivery [2], VLSI design [38] and vehicle routing [14,23].

Since it was first defined in 1984 by Mulvey and Beck [33], a variety of solution
approaches have been proposed for CCP given its practical importance and
NP-hard nature. State-of-the-art approaches include a Greedy Randomized



Adaptive Search Procedure with Path Relinking (GRASP-PR) by Deng and
Bard [10]. In 2013, Moran-Mirabal et al. [31] proposed three algorithms for
the equivalent handover minimization problem: a GRASP with path-relinking
(denoted as GQAP in the corresponding paper), a GRASP with evolutionary
path-relinking (GevPR-HMP) and a population-based biased random-key ge-
netic algorithm (BRKGA). According to their computational results, GevPR-
HMP exhibits the best performance among those three algorithms. In 2015,
Martinez-Gavara et al. [29] presented several approaches which may be con-
sidered as state-of-the-art methods for CCP, including a Greedy Randomized
Adaptive Search Procedure (GRASP), a Tabu Search method (TS), a hybrid
method combining GRASP with TS (GRASP+TS), and a Tabu Search with
Strategic Oscillation (TS_SO). In 2016, Lai and Hao [24] proposed a highly
effective Iterated Variable Neighborhood Search (IVNS) for CCP. More re-
cently, Martinez-Gavara et al. [30] applied several methods to CCP including
a GRASP algorithm (denoted as GRASP2-1) and an Iterated Greedy (IG)
algorithm, while Brimberg et al. [7] presented two highly effective VNS-based
heuristics denoted as GVNS and SGVNS. A comprehensive review on the most
representative approaches for CCP prior to 2011 can be found in [10].

CCP is a constrained problem that imposes a lower and an upper capacity
limit to the size of the clusters. One notices that most of the existing ap-
proaches for CCP restrict their search to the feasible region only, while only
few approaches including GRASP-PR [10], GevPR-HMP [31], GQAP [31],
and TS_SO [29] are allowed to visit infeasible solutions. In this work, we are
interested in search algorithms that examine both the feasible and the infea-
sible space in search of improved solutions. For this purpose, we introduce a
highly effective tabu search (denoted as FITS) that alternates between feasi-
ble and infeasible regions, bringing more flexibility into the search process. In
addition, we propose the first population-based memetic algorithm (MA) for
CCP. It uses FITS as the local optimization mechanism, and incorporates a
dedicated cluster-based crossover to transfer pertinent properties (“building
blocks”) from parents to offspring. Experimental results on five sets of 183
benchmark instances indicate a highly competitive performance of FITS with
respect to the existing state-of-the-art algorithms. Given a longer time limit, a
computational comparison between FITS and MA reveals that MA is able to
further improve on the performance of its underlying FITS in terms of solution
quality.

The remainder of the paper is organized as follows. Section 2 presents FITS,
followed by a detailed description of the proposed memetic approach in Section
3. Experimental results on a widely-used benchmark are provided in Section
4. Section 5 analyzes the contribution of the key algorithmic ingredient to the
performance of the proposed algorithms. Furthermore, we motivate the choice
for the crossover used by MA, prior to conclusions drawn in the last section.



2 Feasible and infeasible exploration with tabu search

2.1 Main framework

Algorithm 1 Main scheme of FITS
Require: Graph G = (V, E)
Ensure: Best found solution S*
S <« InitialSolution(G) /*Section 2.2*/
Initialize tabu_list
S* < S /*S is a feasible solution*/
while stopping condition is not verified do
/*feasible local search phase*/
(S, Siocal_best) < feasible_local_search(S)  /*Section 2.3*/
if f(Slocal,best) > f(S*) then
S* Slocal,best
end if
10:  /*infeasible local search phase*/
11: (S, Siocal best) < infeasible_local_search(S) /*Section 2.4*/
12: if f(Slocal,best) > f(S*) then
13: S* < Siocal best
14: end if
15: end while

@

Instead of confining the search process to feasible regions, a number of studies
on highly constrained problems [9,12,21,26,35] have shown that the consider-
ation of infeasible solutions during the search may help to better explore the
search space. Based on this observation, the proposed tabu search alternates
between a feasible local search phase (FLS for short) that only examines fea-
sible solutions, and an infeasible local search phase (InfLS for short) where
the capacity constraint is relaxed in a controlled manner. The two phases play
different roles in the search process - FLS ensures an intensified exploitation in
a relevant search region, while InfLS is used to introduce more freedom (diver-
sification) into the search. By alternating between these two complementary
phases, FITS is expected to explore various zones of the search space without
being easily trapped in a local optimum.

Algorithm 1 summarizes the general framework of FITS. Starting from a feasi-
ble solution generated with a construction procedure (Section 2.2), FITS first
enters the FLS phase that is based on the best-improvement strategy with a
joint use of three types of move operators (Section 2.3.2). This phase termi-
nates as soon as the search is deemed to be trapped in a deep local optimum,
i.e., if the best found solution cannot be improved for N,,,s consecutive iter-
ations. The algorithm then switches to InfLS that relies on a penalty-based
evaluation function to guide the search to move towards new search regions.
The stopping condition is typically a time limit or a fixed number of iterations.



2.2 Initial solution

The starting point for the search is a feasible solution generated by means of
two randomized construction methods similar to those used in [17,24]. The
first method consists in two stages, where the first stage performs the fol-
lowing steps: (i) randomly select a node v from the set of unassigned nodes,
and randomly choose a cluster g from the set of clusters whose lower ca-
pacity constraint is not satisfied; (ii) allocate v to cluster g. The two steps
are repeated until all clusters satisfy the lower capacity constraint. Once the
first stage is completed, the proposed construction method enters the second
stage that: (i) randomly picks an unassigned node v and a cluster g such that
size|g] + w, <= U,, where size|g] and w, represent respectively the current
weight of cluster g and the weight of node v; (ii) assign v to g. The second
stage of this procedure terminates as soon as all the nodes have been assigned.

As observed in our preliminary experiments, the above described method often
fails to find a feasible assignment of all the nodes when the upper capacity limit
of clusters is very tight. Consequently, we propose the second construction
method which constitutes a slight modification of the first method. Instead of
randomly choosing a node v in both stages of the first construction method,
an unassigned node v is selected such that v has the largest weight (ties broken
randomly). The other steps are kept unchanged.

The time complexity of the construction method is O(n * p).

2.3  Feasible local search (FLS)

FLS searches for the most promising solutions in the feasible space of can-
didate solutions, thus ensuring that the capacity constraint is verified. It is
based on the general tabu search framework [18] and a combined use of three
complementary move operators as described in the following subsections.

2.3.1 Feasible search space and evaluation function

A candidate solution to CCP is any partition of the node set V' into p subsets
Cy, Cy,..., Cp, also called clusters. The search space, including both feasible
and infeasible solutions, is then formally defined as:

Q= {{01702, ...,Cp} : Ule(]i = V, C, N Oj = @} (5)

where 7 # 7, 1 <i,5 < p. Notice that an infeasible solution may contain one



or more empty clusters.

The feasible search space includes the set of all the candidate solutions §2; C €2
satisfying the capacity constraints:

Qf = {{01,02, ...,Op} . Ll S |CZ| S UZ‘, Uleci = Vv, Ol N Cj = @} (6)

where i # 7, 1 <4,j < p and |C;| represents the total weight of the nodes in
cluster i (i.e., |Ci] = X ec, Wu)-

To evaluate the quality of each candidate solution s = {C, Cy, ..., C,} in Qy,
the evaluation function is equivalent to the objective function which sums up
the edge weights associated to endpoints in the same cluster:

=3 Y e ™)

g=11i,j€Cy,i<j

2.3.2  Neighborhood Structures

As previously mentioned, the neighborhood exploited by FLS is defined by a
joint use of three basic move operators, which have previously been employed
in [7,10,24,29,30]. These operators are briefly described as follows:

OneMove operator: Given a solution s = {C1, Cs, ..., C, }, OneMove trans-
fers a node v from its original cluster ¢ to another cluster j such that the
capacity constraint is respected, i.e., |C;| — w, > L; and |C;| + w, < U;. To
rapidly evaluate the gain value for each candidate move, our algorithm employs
a fast incremental evaluation technique similar to that used in [6,24,34,37]. The
main idea is to maintain an incremental matrix 7, where each element ~[v][g]
represents the sum of the edge weights between v and other nodes located in
cluster g of the current solution, i.e., y[v][g] = X.cc, Cuv- Let OneMove(v, i, j)
denote a move that consists in transferring a node v from cluster ¢ to cluster
J, the corresponding gain value can be conveniently calculated as:

Ag(OneMove(v,i, j)) = ~[v][j] — v[v]ld]

After each OneMove operation, a subset of values in ~ affected by the move
is updated as follows: y[u][i] = Y[u][i] — cuw, Y[u][j] = Y[u][J] + cuv, Yu € V.
The complexity to update «y after a OneMove operation is O(n).



SwapMowve operator: This move operator swaps two nodes v and u from
two different clusters i and 7, such that the capacity constraint is maintained.
Let SwapMove(v,u) denote a swap move, the associated move gain can be
efficiently obtained as:

Ag(SwapMove(v,u)) = (v[v][j] = ~[v][]) + (V[w]li] = v[u][j]) — 2¢vn

Since a SwapM ove can be decomposed into two consecutive OneM ove oper-
ations, v is updated in two steps as for the corresponding OneM ove moves.
Clearly, updating v after a SwapM ove operation can also be achieved in O(n)
time.

2-1 Exchange operator: Let v, u and z be three nodes where v and u are
located in the same cluster ¢, while z belongs to another cluster j. The 2-1
Exchange transfers v and u from cluster ¢ to cluster j and simultaneously
moves z from j to i, while respecting the capacity restriction of ¢ and j.
Let Exchange(v,u, z) denote such a move, the resulting move gain can be
computed as:

Ay(Exchange(v,u, z)) = (y[v][j] = ~[v]li]) + (V[u]li] = ~[ulli]) + (v[=][d] —
’}/[Z] []]) + 2(Cvu — Cyz — Cuz)

Since a 2-1 Fxchange move can be decomposed into three consecutive One M ove
operations, the matrix «v is consecutively updated three times according to the
corresponding OneM ove moves.

2.3.3  Ezxploration of the feasible search space

The general scheme of FLS is summarized in Algorithm 2. Starting from a fea-
sible solution, FLS selects at each iteration the best non-prohibited move (i.e.,
non-tabu move of the highest gain) from the union of OneMove, SwapM ove
and 2-1 Exzchange moves, where ties are broken at random. Obviously, such
a combined neighborhood ensures an intensified examination of the feasible
search space, and thus enhances the capacity of finding improved feasible so-
lutions. To avoid short-term cycling, each time a node v is moved from its
original cluster C, it is forbidden to move v back to C' for the next tt it-
erations (tt is called the tabu tenure). Along with this rule, an aspiration
criterion is applied to allow a move, regardless of its tabu status, if it leads to
an improved best found solution. The exploration of the feasible search space
terminates if no improvement is achieved in the consecutive N, iterations
(Neons is called the search depth). At this stage, the algorithm switches to the
Infeasible Local Search (InfLS) phase that introduces a greater diversity, as
the search is deemed to be trapped in a deep local optimum.



Aside from the diversification incurred during InfLS, FLS additionally incor-
porates a shake procedure similar to that used in [24]. The shake procedure
is applied periodically, and consists in performing a random move from the
combined feasible OneMove and SwapM ove neighborhoods. This operation
is repeated 7 times, where 7 is the shake strength.

2.4 Infeasible local search (InfLS)

The basic idea of InfLLS is to relax the capacity constraint so as to allow the
algorithm to visit some intermediate infeasible solutions. In this way, a larger
number of moves become available, enabling transitions between structurally
different high-quality feasible solutions.

Algorithm 2 Feasible Local Search
Require: Initial solution s
Ensure: Final solution s, best solution $jcq; pest found during this phase
1 Siocal best < S
2: NI < 0  /*number of consecutive iterations without improvement of

*
Slocal _best /

3: Iterl <~ 0 /*iteration counter®/
4: Initialize tabu_list
5. while NI < N,,,s do
6:  Choose the best allowed move m € {OneMove U SwapMove U 2-1
Exchange}
7. s<s®m /*Perform the best move*/
8:  Update tabu_list
9: if f(S) > f(slocal,best) then
10: Slocal best < S
11: NI+ 0
12:  else
13: NI+ NI+1
14:  end if
15:  if (Jterl +1)%0==0 then
16: Shake()
17 end if

18: Iterl < ITterl +1
19: end while
20: return (S, Slocal,best)




Algorithm 3 Infeasible Local Search (InfLS)

Require: Feasible solution s returned by FLS
Ensure: Best feasible solution found during InfLS s;,cqi pest, final feasible so-

1:

v

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

lution s fipa
Stmp <= S /*Smp 1s a duplicate of the starting feasible solution s*/
flag_-fs < false /*flag_fs is a boolean variable that indicates whether
a feasible solution was encountered during InfL.S*/
Slocal best < S
penalty_count < 0
penalty_factor <— 2
MI <0
Initialize tabu_list
while M1 < M do
Choose the best allowed move m € {OneMove U SwapMove U 2-1
Exchange}
s < s @®m /*Perform the best move*/
Update tabu_list
if s is a feasible solution then
if f(5> > f(Slocal,best> then
Slocal_best < S
end if
else
penalty_count < penalty_count + 1
end if
MI <+ MI+1
if (MI+1)%A==0 then
if penalty_count > p; then
penalty_factor < penalty_factor x T
else if penalty_count < us, then
penalty_factor < penalty_factor/T
end if
penalty_count < 0
end if
if s is a feasible solution then
S final <~ S
flag_fs <+ true
end if
end while
if flag_fs == false then
Stmp < Shake() /*apply the shake procedure to sy, Section 2.3.3*/
S final — Stmp
end if

return (Sfinal 7Slocal,best)

2.4.1 Fvaluation function and neighborhood structures

To evaluate the quality of a solution s € 2 during InfLLS, we employ a penalty-
based evaluation function f, which is a linear combination of the basic eval-

9



uation function f (Equation. 7) and a penalty function associated with the
degree of solution infeasibility:

M= Y ey xEX(s) ®)

g=114,j€C4,i<j

where [ is a self-adjustment penalty parameter that controls the degree of in-
feasibility introduced into the search. F X (s) is the total degree of infeasibility
of s defined as EX(s) = >0_; 04, where

Lg—|Cg|a if |Cg| <Lg
0g = |Gyl = Uy, if |Cy| > Uy (9)
0, otherwise

The InfLS phase employs the same three basic move operators (OneM ove,
SwapMove and 2-1 Exchange) defined in Section 2.3.2, but without any
capacity restriction. We further use a fast incremental evaluation technique
to effectively calculate the move gain that corresponds to the change in the
penalty-based evaluation function f,. Specifically, for a given move denoted
as mv (mv = OneMove, SwapMove or 2-1 Exchange), the move gain of mv
can be defined as Ag(mv) = Ay(mv) — f x Agx(mv). In addition to the in-
cremental matrix v (see Section 2.3.2), another vector w is maintained where
each element w, represents the total weight of nodes contained in cluster g.
Since all moves induced by OneMove, SwapMove and 2-1 Exchange opera-
tors only involve two clusters, the weight of these two clusters after each move
can be directly calculated by adding or subtracting the weight of the added
or removed nodes. Furthermore, the move gain associated to this change can
easily be updated as described in Equation. 9. The complexity of the above
gain update procedure is O(1).

2.4.2  FExploration with InfLS

While both InfLLS and FLS rely on the tabu search strategy, the main difference
between these procedures lies in the previously described evaluation functions.
The main scheme of InfLS is summarized in Algorithm 3.

During the search process, the variable g of the evaluation function (see Equa-
tion. (8)) is periodically updated depending on the penalty counter (penalty_count)
which records the number of times a feasible solution has been found during
A consecutive iterations (A is a parameter). Recall that 5 controls the degree

10



of infeasibility introduced into the search. More precisely, 3 is increased by a
multiple of 7 if penalty_count > py, and is divided by 7 if penalty_count < s
(1, u1 and po are parameters). Furthermore, the best found feasible solution
Siocal best 18 updated with the current solution s if an improved feasible solu-
tion has been found. InfLS terminates after M iterations (M is a parameter),
followed by the FLS phase. The starting point for the next round of the FLS
search is the most recently encountered feasible solution sy, returned by
InfLS.

Finally, if no feasible solution is found during the InfLLS process, the starting
feasible solution s returned by FLS is perturbed with the shake procedure
(Section 2.3.3) and is then returned as the output of InfLS. Note that the
shake procedure explores feasible solutions only thus resulting in a feasible
solution. Algorithm 3 summarizes the general procedure of the InfLS phase,
in which we use a boolean variable flag_fs to indicate whether a feasible
solution is encountered during the InfLLS phase. It is important to mention
that FLS and InfLLS use two separate tabu lists, which are critical to the
performance of the two local search phases as they prevent the search from
short-term cycling. When switching back to FLS, the tabu list is re-initialized
before entering the main loop.

3 Memetic algorithm

Algorithm 4 Main scheme of MA
Require: Graph G = (V, E)
Ensure: Best solution S* found so far

1: Initialize population P = {51, 55, ..., S|p|}

2: S* < Best(P)

3: while Time does not exceed t,,,, do

4:  Randomly select two parent solutions S; € P and S; € P
Se <= Crossover(S;, S;) /*Section 3.1%/
Se < FITS (S.) /*Section 2.1*/
if f(S.) > f(S*) then

S* S,

end if
10:  POP < Pool_Updating(S,, P) /*Section 3.2 */
11: end while

Relying on the combined exploitation power of local optimization and explo-
ration capacity of population-based search, Memetic Algorithm (MA) [32] is
an effective hybrid framework for tackling a variety of difficult combinatorial
problems.

The main scheme of our MA for CCP is given in Algorithm 4. The algo-

11



rithm consists of four basic components: a population initializing procedure,
a crossover operator, the FITS procedure for local improvement and a pop-
ulation updating rule. Each solution from the initial population is obtained
with the two randomized construction methods described in Section 2.2, and
then further improved with our FITS method presented in Section 2. At each
cycle (generation) of MA, two parent solutions are randomly selected from the
population, and then recombined by means of the crossover operator to gen-
erate an offspring solution (Section 3.1). This new offspring is then improved
by applying a fixed number of iterations of our FITS algorithm (Section 2.1).
Finally, the population updating rule decides whether the improved offspring
should be inserted into the population and which existing solution should be
replaced (Section 3.2). This process is repeated until a predefined stopping
condition (usually a fixed number of generations or time limit) is reached.

3.1 Cluster-based crossover

Algorithm 5 Cluster-based crossover

Require: Two randomly selected parents s' = {C},C3,....C}}, s =
{C?,C3,....C2}
Ensure: Offspring s° = {C7,C3, ...,CP}
i1
: while [ < p do
if (%2 == 0 then
Select a cluster C, € s' with the maximum sum of edge weights
Cy + C,
else
Select a cluster C, € s? with the maximum sum of edge weights
Cy + C,
end if
Remove the subset Cf of nodes from s' and s?
l—1+1
: end while
: Assign in a greedy manner the unassigned nodes V —{CYuCyU...UCY}

— = = =

Crossover operator is one of the key elements of a population-based algorithm.
It is well-known that a crossover’s efficiency on a given optimization problem
crucially depends on its ability to preserve pertinent properties (“building
blocks”) from parents to offspring [19]. In the context of CCP, a building
block may be defined as a cluster (i.e., group or subset of a graph partition),
where the aim is to maximize the sum of edge weights whose two associ-
ated endpoints belong to the given cluster. As CCP can be classified as a
grouping problem [13], it is more natural and straightforward to manipulate
groups of objects (i.e., clusters) rather than individual objects. Furthermore,

12



an analysis on a sample of locally optimal CCP solutions (see Section 5.3.1)
discloses a high percentage of nodes that are always grouped together across
high quality solutions, which provides a strong motivation for preserving the
grouped nodes (i.e., cluster) from parent individuals to offspring solution. The
proposed cluster-based crossover (CBX) is further inspired by the Greedy Par-
tition Crossover (GPX) used for the classic graph coloring problem [15].

Given two parent solutions, CBX generates an offspring s° = {C7,C3, ..., C}
in two sequential stages as summarized in Algorithm 5. The first stage per-
forms p iterations (i.e., one iteration per cluster), where each iteration [ con-
sists in selecting a cluster C, from a reference parent such that the weighted
sum of edges with both endpoints in C, is maximized. Cluster C, then be-
comes the [ building block of s°, followed by the removal of all the nodes
contained in C, from both parent individuals. The reference parent is selected
between s!' and s? in an alternating manner. Note that the first crossover stage
may result in a partial solution as some nodes may have been left unassigned.
The second stage of the crossover process is a greedy construction method
that consists in selecting an unassigned node v and inserting it into cluster g
of the offspring solution, such that L, < w, + |Cg| < U, while maximizing the
objective function value defined in Equation. 7. This process is repeated until
all the nodes are assigned.

3.2 Population updating strategy

Population update strategy is another key element of a MA algorithm whose
main role is to maintain a healthily diversified population throughout the
search. To avoid premature convergence, we employ a quality-and-distance
pool updating strategy which takes into account both the solution quality
and the distance between individuals in the population to decide whether
a new offspring should be introduced into the population. For this purpose,
the distance Dist(S,, Sp) between two solutions S, and Sy is defined as the
minimum number of one-move steps required to transform Sy to S, [28]. Given
a population P = {S},5,...,5p|}, the distance between a solution S; (i €
1,2,....|P|) and P is computed as:

DS p = mm{Dzst(S“ S]>|Sj € P, Sj 7é Sz} (1())

iy

The main scheme of the population update procedure, which is similar to that
used in [28,39], is provided in Algorithm 6.

First, offspring S is tentatively added to P resulting in P' = PJ{Sy}. The
quality-and-distance score function R is then applied to rank each solution

13



SZ‘GP/Z

R(S;, P') = aX (f(5)) + (1 = @)X (Ds, p) (11)

where « is a parameter set to 0.6 according to [28], and f(S;) is the objective
value of S;. X(.) is a function defined as:
X(y) — Y~ Ymin

Ymazx _ymin+1

where Ya: and 4,,;, are the maximum and the minimum possible values of y
respectively. Finally, the solution S, with the smallest score is removed from
the population to make space for offspring .Sy.

4 Computational experiments

This section provides an extensive assessment of the proposed algorithms on
a well-known set of 133 benchmark instances from CCPLIB, as well as on
two new groups of 50 large instances recently generated in [7]. To evaluate the
effectiveness of the proposed approaches, we perform comparisons with several
state-of-the-art algorithms from the literature. For the ease of reading and for
the sake of clarity, Table 1 shows the list of the proposed and the reference
algorithms from the CCP literature.

Algorithm 6 Population update strategy

Require: Offspring Sy, population P = {Sl, So, ..., S|p|}

Ensure: Updated population P = {Sl, So, ..., S|p|}
: Tentatively add Sy to P: P' = PU{So}
: fori=0,1,...,|P| do
Calculate the distance between S; and P’ according to Eq.(10)
Calculate the goodness score R(S;, P') of S; according to Eq.(11)
end for
Identify the solution S, with the smallest goodness score in P’ : S, =
min{R(S;, P")|i =0,...,|P|}
7. if S, # Sy then
Replace S, with Sg: P = PU{So} \ {Sw}
9: end if

NN

®
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4.1  Benchmark instances

The instances from CCPLIB! can be grouped into three sets:

e DB (10 instances): This set was introduced by Deng and Bard [10] for
the Maximally Diverse Grouping Problem (MDGP), and adapted for CCP
in [29] by generating node weights with a uniform distribution in the range
[0, 10]. These instances are characterized by n = 82,p =8, L, = 25,U, = 75.

e RanReal (40 instances): This set was originally proposed in [17] and first
adapted for CCP in [29] by generating node weights with a uniform dis-
tribution in the range [0, 10]. It includes 20 instances with n = 240,p =
12, Ly = 75,U, = 125, and another 20 instances with n = 480,p = 20, L, =
100,U, = 150. The edge weights are real numbers randomly generated in
the range [0, 100].

e MM (83 instances): This set was introduced by Moran-Mirabal et al. [31]
with n € {20,30,40, 100,200,400} and p € {5,10,15,25,50}. The edge
weights are real numbers, while L, and U, are respectively set to 0 and a
real number that differs for each instance. The set is widely used in the
literature for the handover minimization problem.

Additionally, we perform experiments on the following two groups of 50 large
instances? from [7]:

e RanReal960 (30 instances): This set consists of 3 subsets. Each subset con-
tains 10 instances characterized as follows:
- n=960,p =30,L, = 120,U, = 180;
- n=960,p=40,L, = 90,U, = 135;
- n =960,p =60, L, = 60, U, = 90;

e MDG (20 instances): This set includes 20 instances with n = 2000,p =
50, L, = 200,U, = 300. The edge weights and the node weights are gener-
ated using the same method as in [11].

4.2 Ezxperimental protocol

The proposed FITS algorithm requires eight parameters: tabu tenure (tt),
search depth of FLS (Neps), shake frequency (0) and shake strength () of
FLS, update frequency (\) of the self-adjustment penalty 5 in InfLS, update
coefficients of 5 (7, pi1, pe) in InfLS, and the maximum number of InfLS
iterations (M). MA requires two additional parameters: the population size
(|P|) and the number of FITS iterations (Iter). To determine the appropriate

! http://wuw.optsicom.es/ccp/
2 http://www.mi.sanu.ac.rs/~nenad/ccp/
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Table 1

List of the reference algorithms for CCP and its equivalent HMP.

Algorithm Reference Search strategy

name

FITS - A tabu search alternating between exploration in feasible and infeasible search space

MA - A memetic algorithm that extends FITS with a dedicated cluster-based crossover
operator

GRASP-PR [10](2011) A reactive GRASP

GevPR-HMP [31](2013) A GRASP combined with an evolutionary path-relinking algorithm in which a repair
procedure is applied to achieve feasibility

GQAP [31](2013) A GRASP method with a new variant of path-relinking dealing with infeasibilities

BRKGA [31](2013) A biased random-key genetic algorithm using a parameterized uniform crossover

GRASP [29](2015) A simplified GRASP

TS [29](2015) A tabu search algorithm exploiting the 2-1 exchange neighborhood

GRASP+TS [29](2015) A hybrid combining GRASP with tabu search

TS_SO [29](2015) A tabu search with strategic oscillation that considers infeasible solutions

IVNS [24](2016) An iterated variable neighborhood search combining an extended variable neighbor-
hood descent with a randomized shake procedure

GRASP2-1 [30](2017) A new GRASP method in which the improvement procedure performs 2-1 exchanges

1G [30](2017) An iterated greedy method alternating between destructive and constructive phases

IG-GRASP [30](2017) A hybrid between GRASP2-1 and iterated greedy method

GVNS [7]1(2017) A general variable neighborhood search that follows the standard VNS approach
including more levels of shaking

SGVNS [7]1(2017) A skewed general variable neighborhood search that allows moves to inferior solutions

Table 2
Settings of the parameters.
Parameter Section Description Considered values Final
value
Ncons 2.3 search depth of each FLS phase {500, 700, 1000, 1500, 2000} 1000
M 2.4 maximum number of iterations of each {100, 150, 200, 250, 300} 200
InfLS phase

tt 2.3,2.4 tabu tenure {5, 7, 10, 12, 15} 10

8 2.3 frequency of shake {300, 400, 500, 600, 700} 500

n 2.3 shake strength {0.06*n, 0.08*n, 0.10*n, 0.12%*n, 0.10*n

0.14*n}

Iter 3 number of iterations of FITS in MA {5000, 8000, 10000, 12000, 15000} 10000

| P| 3 size of population {5, 7, 10, 13, 15} 5

A 2.4 update frequency of 8 in InfLS - 5

T 2.4 update coefficients of 8 in InfLS - 2

75t 2.4 update coefficients of 8 in InfLS - 4

Hno 2.4 update coefficients of 8 in InfLS - 1

parameter settings for FITS and MA, we run the Iterated F-race (IFR) method
3], implemented within the IRACE package [27], on a selection of 20 RanReal
instances with n = 240 and n = 480. The tuning budgets of FITS and MA
are set to 500 runs with the time limit of 1.0 x n seconds for each run. Table
2 shows the tested and the final values obtained in the tuning process. For A,

7 p1 and s, we simply adopt the values recommended in [9,20].

The proposed algorithms are coded in C++, compiled with the g++ compiler
using option “-O3”, and executed on an Intel E5-2670 processor (2.8GHz) with
2GB RAM running under Linux. For time scaling purposes, the execution time
of the DIMACS machine benchmark?® on our system is 0.19s for graph r300.5,

1.17s for graph r400.5 and 4.54s for graph r500.5.

3 ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 3
Statistical results for FITS and six state-of-the-art algorithms on two sets of CCP
instances: DB and RanReal. The best performance is indicated in bold.

Instance GRASP TS GRASP+TS IVNS GVNS SGVNS FITS
set
DB & #Best/Avg. 8/2 4/0 9/2 14/10 10/10 32/40 29/20
RanReal
p-valuepesy /p- 7.75e- 7.75e- 2.86e- 1.25e- 1.87e- 0.88/0.02
valuegung 11/1.54e- 11/1.54e-  9/1.54e-10 7/7.70e- 9/2.54e-
12 12 8 10
Average 6.66/7.56 1.33/2.42 1.35/2.00 0.26/0.40  0.22/0.63 0.20/0.36 0.19/0.33
De“hest/DeUavg(%>
AvgTime(s) 149.25 50.68 187.26 224.24 243.04 187.33 201.35

4.3 Comparison between FITS and the state-of-the-art algorithms on the gen-
eral CCOP instances

To evaluate the performance of FITS on the first two sets of instances (DB
and RanReal), we provide comparisons with several state-of-the-art algorithms
including GRASP [29], TS [29], GRASP+TS [29], IVNS [24], GVNS [7] and
SGVNS [7]. For a fair comparison with these state-of-the-art algorithms, we
use their corresponding source codes and run them on our computing platform
under the same computing conditions as described in Section 4.2. GRASP,
TS, GRASP+TS, IVNS were previously re-implemented by Lai et al. [24]
and their source codes are available at http://www.info.univ-angers.fr/
pub/hao/ccp.html. The source codes of GVNS and SGVNS were shared by
the corresponding author and are available at http://www.mi.sanu.ac.rs/
~nenad/ccp/. All the codes were compiled using g++ compiler with the -O3’
option. For all the algorithms in this experiment, the stopping condition is a
fixed cutoff time limit ¢,,,, set to 1.0 x n seconds, where n is the number of
nodes in the given graph. Due to the stochastic nature of the algorithms, we
perform 20 independent runs of each algorithm per instance.

Table 3 summarizes the statistical results for each algorithm on the instances
of the DB and RanReal sets. Row ‘#Best/Avg.” indicates the number of cases
that each algorithm outperforms the remaining approaches in terms of the
best and the average objective value. The average percent deviation of the
best /average result from the best solution obtained within this experiment is
provided in row ‘Average Devpest/Dev,y,,’, while the average computing time
(in seconds) required by each algorithm to reach its final objective value is
provided in row ‘AvgTime’. For each instance, we calculate the best and the
average deviation (Devpes and Devgyg) as (f* — f)/f* x 100, where f is the
best or the average result and f* is the best solution obtained with all the
compared algorithms. Finally, to determine whether there exists a statistically
significant difference in performance between FITS and the six reference al-
gorithms, row ‘p-valuepes: /p-valuey,,” provides the p-values obtained with the
pairwise Wilcoxon statistical test on the best/average results. Detailed results
on the DB and the RanReal benchmarks are given in the Appendix (Tables
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Table 4
Statistical results of FITS and six state-of-the-art algorithms on two large instance
sets: RanReal960 and MDG. The best performance is given in bold.

Instance GRASP TS GRASP+TS IVNS GVNS SGVNS FITS
set
RanReal960 #Best/Avg. 0/0 0/0 0/0 0/0 0/0 46/46 4/4
& MDG
p-valuepest /p- 1.54e- 1.54e- 1.54e- 1.14e- 0.09/0.16 2.86e-
valuegyg 12/1.54e- 12/1.54e- 12/1.54e- 11/1.54e- 9/2.86e-
12 12 12 12 9
Average 16.94/17.44 6.60/7.36 3.77/4.47 1.27/1.70  0.61/0.80 0.01/0.610.89/1.07
Devbest/Devavg(%)
AvgTime(s) 694.09 1115.02 1221.46 1251.36 1202.49 1240.53 1282.67
11, 12).

From Table 3, we observe that GRASP, TS, GRASP+TS, IVNS, GVNS,
SGVNS and FITS respectively outperform the other algorithms on 8, 4, 9,
14, 10, 32 and 29 instances in terms of the best objective value. In terms of
the average results, FITS achieves better performance on 20 instances, while
GRASP, TS, GRASP+TS, IVNS, GVNS and SGVNS outperform the other
methods on 2, 0, 2, 10, 10 and 40 instances respectively. In terms of the average
percent deviation (Average Devyes;/Devayy), FITS reports the smallest devia-
tion from the best solutions obtained within this experiment (0.19%/0.33%).
Except for the comparison with SGVNS, the statistical test reveals a sig-
nificant difference in performance between each of the reference algorithms
(p-value < 0.05), demonstrating the efficiency of FITS on the DB and the
RanReal instances.

4.4 Comparison between FITS and the state-of-the-art algorithms on the
large CCP instances

RanReal960 and MDG benchmarks consist of large instances recently used to
assess the performance of the algorithms for CCP in [7]. A summary of the
statistical results for these instances, obtained with FITS and the reference

algorithms, are shown in Table 4. Detailed results are given in Tables 13 and
14 of the Appendix.

Row p-valuepest /p-value,,, reveals a statistically significant difference in per-
formance between FITS and all the reference algorithms except GVNS. When
considering the average percent deviation from the best-found solutions within
the experiments, SGVNS outperforms all the algorithms with Devy.q; = 0.01%
and Dev,,, = 0.61%, while FITS exhibits a better performance than GRASP,
TS, GRASP+TS and IVNS.
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Table 5
Statistical results of FITS and the six state-of-the-art algorithms on handover min-
imization instances with n > 100. The best performance is indicated in bold.

Instance GevPR- GQAP BRKGA IVNS GVNS SGVNS FITS
set HMP
MM #Best/Avg. 9/4 11/0 2/0 37/18 23/15 24/25 43/30
(n >
100)

p-valuepest /- 1.97e- 5.51e- 5.47e- 0.00/0.02  1.19e- 7.44e-

valueayy 9/1.68e-  9/1.97e-  11/1.97c- 5/0.08 5/0.38

8 11 11

Average 1.32/1.74  8.37/10.15 3.19/3.94 0.01/0.28 0.20/1.53 0.19/0.33 0.00/0.20

Devyest/Devawg (%)

AvgTime(s) - - - 97.82 66.18 75.77 120.48

4.5 Comparison between FITS and the state-of-the-art algorithms on the
handover minimization instances

Table 5 summarizes the statistical results reported with FITS and the six state-
of-the-art algorithms on the handover minimization instances with n > 100.
These reference algorithms include IVNS [24], GVNS [7], SGVNS [7] and three
algorithms proposed in [31]: GevPR-HMP, GQAP and BRKGA. The handover
minimization instances with n € {20,30,40} do not appear to be challenging
as all the considered algorithms are able to attain the best-known solution
within a very short computing time for each case. For completeness, the com-
putational results for these instances are provided in Appendix (Table 22).
In Table 5, the results reported with GevPR-HMP, GQAP and BRKGA are
directly compiled from [31], and were obtained over 5 independent runs with a
cutoff time set to 24 hours. This is significantly longer than the time limit used
for IVNS, GVNS, SGVNS and FITS, which is set to 1.0 xn seconds (24 hours
vs. n < 400 seconds). The results for IVNS, GVNS, SGVNS and FITS were
obtained across 20 independent runs under the same computing conditions as
described in Section 4.2. When handling the handover minimization instances,
we use the results in the form of minimization for a direct comparison. The
following relation is used to transform the CCP objective function into the
equivalent objective for handover minimization: f,,;, = Q(Ziq Cij — fmaz)s
where f,.;, and f,.q. represent the objective values of handover minimization
and CCP respectively. The symbol “-” denotes the cases when the result is
not reported in the literature. Detailed results are given in Tables 15 and 16
of the Appendix.

From Table 5, we observe that GevPR-HMP, GQAP, BRKGA, IVNS, GVNS,
SGVNS and FITS outperform the other reference algorithms on 9, 11, 2,
37, 23, 24 and 43 instances respectively in terms of the best objective value.
In terms of the average results, FITS achieves a better performance on 30
instances, while GevPR-HMP, GQAP, BRKGA, IVNS, GVNS and SGVNS
outperform the other methods on 4, 0, 0, 18, 15, 25 instances respectively.
Notice that if we sum up the number of times each algorithm performed best,
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we get 149 for Best and 92 Avg respectively. This is because several algorithms
obtain the same best objective value and the same average objective value on
some instances. In terms of the average percent deviation of the best/average
results from the best solutions obtained within this experiment, FITS shows
the best performance with Devyess = 0.00% and Dev,,, = 0.20%. Finally, the
p-values of the Wilcoxon pairwise test (row ‘p-valuepes:/p-valueq,,’) show a
statistically significant difference in the best performance between FITS and
the six reference approaches with p-value < 0.05, which shows the benefit of
FITS on the handover minimization instances with n > 100.

4.6 Time-to-target analysis

To further compare the performance between FITS and the reference algo-
rithms, we apply the time-to-target (TTT) analysis which identifies the em-
pirical probability distribution of the time required to achieve a given target
value [1]. We conduct this TTT experiment by executing 100 independent
runs of GRASP, TS, GRASP+TS, IVNS, GVNS, SGVNS and FITS on each
instance. For each instance/target pair, the running times are sorted in an in-
creasing order. We associate with the i-th sorted running time ¢; a probability
pi = (i—0.5)/100, and plot the points (¢;, p;). In this experiment, in order to al-
low all the algorithms to reach the target in all runs, the target value is set to be
a value slightly smaller than the best obtained objective value. Fig. 1 illustrates
the results for the compared algorithms on instances RanReal240_05, Ran-
Real240_09, RanReal240_16, RanReal480_05, RanReal480_14, RanReal480_18,
RanReal960-02.30, RanReal960_06.30, RanReal960_07.40, RanReal960_05.60,
MDG-a_23 and MDG-a_35 which are randomly selected from three groups of
the largest benchmark instances (RanReal, RanReal960 and MDG). From
Fig. 1, we observe that FITS has the highest probability of reaching the
target result with the shortest computing time on instances RanReal240_05,
RanReal240_09, RanReal240_16, RanReal480_05, RanReal960_02.30 and Ran-
Real960-07.40, and is the third best performing algorithm (after SGVNS and
GVNS) on instances RanReal480_18, RanReal960_06.30, RanReal960_05.60,
MDG-a_23 and MDG-a_35. We conducted the TTT experiments on other in-
stances and observed similar behavior. Therefore, this experiment confirms
that FITS competes very favorably with the reference algorithms GRASP,
TS, GRASP+TS, IVNS, GVNS and SGVNS.

4.7  Comparison between FITS and MA

In this section, we additionally compare FITS and MA on the first two sets
(DB and RanReal) of CCP instances and the handover minimization instances
with n > 100. For this comparison, each algorithm is executed 20 times per
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Fig. 1. Probability distribution of the time required to achieve a target value.

Table 6

Comparative statistical results between FITS and MA on the first two sets (DB and
RanReal) of CCP instances and the handover minimization instances with n > 100.
The better performances are indicated in bold.

Instance set FITS MA

DB & RanReal #Betterl/Better2 3/7 25/33
Average Devpegt/Devayg (%) 0.03/0.11 0.00/0.10

MM (n > 100) #Betterl/Better2 0/8 3/19
Average Devpegt/Devayg (%) 0.00/0.15 0.00/0.05
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Table 7

Summary of statistical results obtained with FITS and its two underlying com-
ponents FLS and InfLS for the RanReal benchmark set. The best performance is
indicated in bold.

Instance set FITS FLS InfLS

RanReal #Best/Avg. 35/36 12/4 0/0
p-valueye gt /pP-valuegyg 6.23e-5/4.20e-7 2.54e-10/2.54e-10
Average Devyegi/Devayg (%) 0.01/0.18 0.03/0.21 0.33/0.53

instance with a prolonged computing time of 15.0 x n seconds. The reason
behind an extended cutoff time is due to our experiences and observations
from previous studies [19] indicating a slower convergence pace of an MA
compared to a local search algorithm.

Table 6 summarizes the statistical comparative results between FITS and MA,
while detailed results are given in Tables 17 and 18 in the Appendix. In a nut-
shell, MA improves on the best result reported by FITS for 28 instances, and
fails to match the best solution obtained with FITS for only three instances. In
terms of the average performance, MA outperforms FITS on 52 instances, and
is outperformed by FITS on 15 instances. When considering the average per-
cent deviation of the best/average results from the best solutions found within
this experiment (Average Devpest/Devyyy), MA achieves a better performance
than FITS on all the three sets of instances. Finally, for all the three sets of
instances, the Wilcoxon test indicates a statistically significant difference in
the best and the average performances with p-value = 6.437e-4 and p-value =
0.049 respectively. Thus, we can conclude that MA should be considered over
FITS given a longer time limit.

5 Analysis

This section evaluates the importance of the key elements of the proposed
FITS and MA algorithms: (i) the joint exploitation of feasible and infeasible
search space, (ii) the best improvement strategy vs. the first improvement
strategy, and (iii) the cluster-based crossover operator. The experiments pre-
sented below are carried out on a set of 40 instances from the RanReal bench-
mark with 20 independent executions per instance under the same computing
platform as described in Section 4.2.
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Fig. 2. Percentage deviation of the average result reported with FITS, FLS and ILS
from the best solutions found in this experiment for the 40 RanReal instances.

5.1 Analysis of the combined exploitation of feasible and infeasible search
space

While a number of existing heuristics for CCP including TS [29], IVNS [24],
GVNS [7] and SGVNS [7] restrict their search to the feasible regions only, a key
feature of FITS and several other heuristics like GRASP-PR [10], TS_SO [6],
GevPR-HMP [31] and GQAP [31] is the consideration of infeasible solutions.
By alternating between feasible and infeasible local searches, FITS is able to
visit various zones of the search space without being easily trapped in a local
optimum. To evaluate the effectiveness of this hybrid scheme, we compare

FITS with its two underlying components, namely the feasible local search
(FLS) and the infeasible local search (InfLS).

Table 7 summarizes the statistical results of this analysis, while detailed results
are given in the Appendix (Table 19). As observed in Table 7, it is evident that
FITS outperforms both FLS and InfLLS. More precisely, in terms of the best
and the average performance, FITS respectively reports matching or better
results than both algorithms on 35 and 36 out of the 40 instances with p-
values of 6.23e-5/4.20e-7 and 2.54e-10/2.54e-10. We further observe that InfL.S
alone appears to be the weakest of the three versions on all of the tested
instances. To complement this comparison, Fig. 2 plots the performances of the
three algorithms on these 40 instances. For each instance and each algorithm,
the y-axis shows the percent deviation of the average result from the best
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Table 8
Summary of statistical results obtained with FITS and its variant FITS_FI on the
40 RanReal instances. The best performance is indicated in bold.

Instance set FITS FITS_FI
RanReal #Best/Avg. 40/40 0/0
p-valueye gy /P-valuegyg 2.54e-10/2.54e-10
Average Devpest/Devayg (%) 0.00/0.15 0.56/0.71
AvgTime(s) 249.39 157.44

solutions found in this experiment. The figure further highlights the benefit of
the combined use of the feasible and the infeasible local search.

5.2 The best improvement strateqy v.s. the first improvement strateqy

As described in Section 2.1, FITS applies the best improvement strategy to
select a solution from the neighborhoods induced by the three move operators,
i.e., OneMove, SwapMove and 2-1 Exchange. To verify the importance of
this feature, we create a variant of FITS (denoted by FITS_FI) that uses the
first improvement strategy, where the earliest visited neighboring solution of
improved quality replaces the current solution. The summary of statistical
results of this comparison on the 40 RanReal instances are shown in Table 8,
while detailed results are given in Table 20 in the Appendix.

From Table 8, one notices that FITS outperforms FITS FI on all of the
instances both in terms of the best and the average result (#Best/Avg.).
In terms of the average percent deviation of the best/average results from
the best solutions obtained within this experiment (Average Devpest/ Devgyg),
FITS shows a better performance than FITS_FI with p-value = 2.54e-10 and
p-value = 2.54e-10 respectively. These observations confirm the usefulness of
the best improvement strategy within the proposed tabu search framework.
However, as expected, FITS_FI shows to be faster than FITS in terms of the
average time required to reach the final solution.

5.8 Analysis of the cluster-based crossover

5.3.1 Motivation behind the cluster-based crossover

As explained in Section 3.1, the basic idea behind the cluster-based crossover
is to preserve building blocks (clusters of nodes) from parent individuals to
offspring solution. Such crossovers have shown to be effective when there is
a large percentage of nodes that are always grouped together between high-
quality local optima (including global optima which are technically speaking
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Table 9
Percentage of nodes that are grouped together in local optima of various qualities

Instance Shq Sall Sio Instance Shq Sail Sio
RanReal240.01 72 54 45 RanReal480.01 82 29 14
RanReal240.02 85 49 39 RanReal480.02 88 26 14
RanReal240.03 75 48 38 RanReal480.03 88 28 14
RanReal240.04 80 48 41 RanReal480.04 92 29 14
RanReal240.05 86 48 38 RanReal480.05 83 26 14

also local optima) [4].

Given two local optima s' = {C],C3,...,C}} and s* = {C},C3,...,C}, let
E = {(cl,c)lie{1,2,..,p},j € {1,2,..,p}} denote the set of all the p x p
cluster combinations of s! and s2, and let J denote the set of nodes that are
grouped together in both s' and s%. Starting from J = (), we use an iterative
procedure that determines the largest percentage of nodes grouped together in
s' and s* with the following steps: (i) for each cluster combination (C},C7) €
E', compute the number of identical nodes k’cil(j? =Cln Cf; (ii) select a
combination (C},C%) € E' with the largest kcilcjz and place the common
nodes into J (i.e., J = JU{C} N C2}); (iii) remove from E" all combinations
associated with C} and CJZ. This process is repeated until E' becomes empty.
The percentage of nodes that are grouped together in both s' and s? is then
expressed as 100% x* %

For this analysis, we employ a selection of 10 hard instances from the Ran-
Real set. For each instance, we collect a set Sy; of local optima of different
qualities, obtained after 500 independent runs of MA and FITS with differ-
ent time limits. We select the top 20% (100) local optima with the largest
objective values from Sy to form the subset Sp, of ‘high-quality solutions’.
Similarly, we take the bottom 20% (100) with the smallest objective values to
form the subset S;, of ‘low-quality solutions’. Table 9 shows the percentages of
common node groupings across all the local optima in Sj,, Sa; and Sj, respec-
tively. From these results, we conclude that the percentage of nodes that are
grouped together throughout each of the high-quality local optima from S,
is very large, ranging from 72% to 92%. Assuming that high-quality solutions
might be close to an optimal solution or could themselves constitute optimal
solutions, it is very likely that these clusters might form the building blocks
of a global optimum.

5.3.2  Comparison with the uniform crossover

To evaluate the benefit of the cluster-based crossover that transfers pertinent
properties from parents to offspring, we compare it with a standard uniform
crossover where each node is randomly transferred to the same cluster as
in one of the two parents. As the resulting offspring may violate the capacity
constraint, the uniform crossover proceeds next by moving a randomly selected

25



Table 10
Comparison of the two MA versions using a uniform and a cluster-based crossover
respectively on the 40 RanReal instances. The best performance is indicated in bold.

Instance set Uniform CX Cluster-based CX
RanReal #Best/Avg. 2/0 31/40
p-valueye gy /P-valueqyg 4.46e-7/2.54e-10
Average Devpest/Devavg (%) 0.56/0.71 0.00/0.15
AvgTime(s) 2898.81 3856.70

node from the highest to the lowest weight cluster until the solution feasibility
is reached. For this experiment, the other MA components are left unchanged.
The time limit is set to 15.0 * n seconds per execution.

Table 10 summarizes the statistical results for each MA version on the 40
RanReal instances, while detailed results are given in Table 21 in the Ap-
pendix. Although the cluster-based crossover results in longer computing time
than the uniform crossover due to a higher complexity, it clearly outperforms
the uniform crossover in terms of both the best and the average results with
p-value = 4.46e-7 and p-value = 2.54e-10 respectively. Indeed, out of the 40 in-
stances, the cluster-based crossover is outperformed by the uniform crossover
only on two instances. These observations highlight the importance of pre-
serving important building blocks from parents to children in case of CCP.

6 Conclusion

We presented two highly effective heuristics for the Capacitated Clustering
Problem (CCP): a tabu search approach (denoted as FITS) that alternates
between exploration in feasible and infeasible search space regions, and a
Memetic Algorithm (MA) that extends FITS with a dedicated cluster-based
crossover and a quality-and-distance pool updating strategy. The computa-
tional results on five sets of 183 CCP instances indicate that both FITS and
MA compete favorably with the current state-of-the-art algorithms. The in-
vestigation of several essential components of the proposed algorithms sheds
light on the following points. First, the consideration of both feasible and
infeasible search space regions can greatly enhance the neighborhood search
for CCP. Second, the best improvement strategy is able to outperform the
first improvement strategy within the tabu search framework for CCP. Third,
given an extended time limit, MA can further improve upon the performance
of FITS which is greatly due to the cluster-based crossover that transfers per-
tinent properties from parents to offspring. The use of this crossover within
MA was motivated by a large degree of similarity between high-quality CCP
solutions. Finally, this work demonstrates the effectiveness of exploring both
feasible and infeasible spaces for CCP - an idea that certainly deserves to be
investigated on other highly constrained problems in the future.
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Appendix

The purpose of this appendix is to show detailed computational results and
comparisons between our two proposed algorithms (FITS and MA) and the
state-of-the-art algorithms on the complete CCP benchmark consisting of 183
instances (Tables 11-22). For each instance and approach, columns ‘fpes’,
“favg’ and ‘t,,," show respectively the best objective value, the average ob-
jective value and the average computing time in seconds required to reach
the final solution (see Section 4.2 for the used experimental protocol). Col-
umn ‘Devpes/Devg,,” indicates the percent deviation between the best or the
average result and the best solutions obtained within each experiment. Row
‘#Best’ gives the number of cases when each algorithm outperforms the re-
maining approaches, while row ‘Average’ shows the average result for a given
subset of instances. Finally, row ‘p-value’ indicates the outcome of the non-
parametric Friedman tests on the results obtained with FITS and the reference
algorithms. The best results are highlighted in bold.
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Table 11. Comparison of FITS with six state-of-the-art algorithms on the first two sets

of CCP instances (RanReal and DB).

fbest favg

Name GRASP TS GRASP4+TS IVNS GVNS SGVNS FITS GRASP TS GRASP4+TS IVNS GVNS SGVNS FITS
Sparse82_01 1342.17 1336.18 1342.17 1342.17 1342.17 1342.17 1342.17 1342.13 1319.78 1342.08 1342.17 1342.17 1342.17 1342.17
Sparse82_02 1306.64 1304.07 1306.64 1306.64 1306.64 1306.64 1306.64 1305.13 1281.86 1305.82 1306.64 1306.64 1306.64 1306.64
Sparse82_03 1352.60 1353.94 1353.94 1353.94 1353.94 1353.94 1353.94 1349.32 1340.87 1351.97 1353.94 1353.94 1353.94 1353.94
Sparse82_04 1289.41 1289.85 1291.22 1291.22 1291.22 1291.22 1291.22 1286.76 1275.32 1286.79 1291.22 1291.22 1291.22 1291.22
Sparse82_05 1352.35 1351.93 1352.35 1352.35 1352.35 1352.35 1352.35 1352.35 1326.91 1352.35 1352.35 1352.35 1352.35 1352.35
Sparse82_06 1354.61 1354.61 1354.61 1354.61 1354.61 1354.61 1354.61 1348.27 1338.99 1354.53 1354.61 1354.61 1354.61 1354.61
Sparse82_07 1266.94 1263.46 1266.94 1266.94 1266.94 1266.94 1266.94 1266.41 1240.36 1266.49 1266.94 1266.94 1266.94 1266.94
Sparse82_08 1393.02 1391.80 1393.02 1393.02 1393.02 1393.02 1393.02 1393.02 1356.97 1393.02 1393.02 1393.02 1393.02 1393.02
Sparse82_09 1294.12 1294.12 1293.39 1294.12 1294.12 1294.12 1294.12 1293.50 1283.51 1293.39 1294.12 1294.12 1294.12 1294.12
Sparse82_10 1356.98 1356.98 1356.98 1356.98 1356.98 1356.98 1356.98 1356.64 1331.70 1356.92 1356.98 1356.98 1356.98 1356.98
RanReal240.01 208042.53 223612.67 222583.14 224831.56 224580.56 224968.01 224941.48 205301.82  221895.65 221577.41  224571.29 224207.09 224769.72 224802.06
RanReal240.02 192176.29 202712.60 202267.35 204624.36 204205.41 204624.36 204624.36 190315.97 201126.44 200804.77 204275.49 203682.12 204444.31 204359.38
RanReal240.03 189174.76 196190.26 196219.48 198861.68 198472.78 199059.56 198954.91 184911.36 193715.43 194896.16 198606.95 197806.87 198849.22 198799.84
RanReal240.04 211858.14 222757.74 223014.44 225390.88 225144.59 225627.16 225627.16 208108.02 220498.11 221213.35 225069.14 224463.81 225389.88 225364.97
RanReal240.05 185068.56 193354.26 193366.04 195540.41 194911.72 195516.57 195564.48 182679.54 191838.80 191419.12 195184.84 194361.91 195306.51 195320.28
RanReal240.06 204852.60 214549.17 214795.75 216713.91 216383.13 216733.31 216747.32 201609.66 213162.89 213268.67 216355.53 215849.06 216584.23 216487.02
RanReal240.07 199266.17 207885.74 207651.76 209216.90 209118.64 209223.34 209305.70 197642.75 206463.38 206283.07 208992.44 208329.21 209080.57 209029.23
RanReal240.08 191567.87 203825.77 202751.94 205246.82 204754.36 205154.20 205246.82 188619.12 201792.09 201223.78 204842.79 204137.78 204951.20 204961.05
RanReal240.09 198371.82 208130.74 208084.10 209142.07 208702.16 209007.44 209159.16 195694.73 206905.51 206706.66 208720.16 208276.52 208904.78 208952.48
RanReal240.10 179776.60 190295.58 189990.45 192885.48 192343.75 193062.60 192986.21 178618.43 188282.57 188638.25 192598.79 191874.34 192842.05 192811.13
RanReal240-11 192080.94 203400.14 202566.12 204647.20 204399.04 204615.71 204722.75 190809.39 201583.11 201425.46 204377.08 203900.12 204480.92 204559.39
RanReal240_12 190392.42 200045.55 199587.27 201028.32 200822.69 201076.30 201117.11 188016.22  198745.49 198735.77 200763.75 200150.52 200938.30 200797.67
RanReal240.13 188179.08 200362.63 200707.10 202331.20 201977.87 202321.58 202335.99 185699.95 199258.93 199400.56 202027.28 201356.20 202198.63 202139.57
RanReal240.14 209616.67 227192.94 226818.46 228870.89 228661.60 228775.14 228870.89 205710.79  225659.19 225340.11 228520.04 228054.32 228569.78 228554.78
RanReal240.15 179818.51 189389.87 188797.36 191152.17 190575.48 191238.53 191255.87 177071.08 187190.02 187392.49 190827.68 189965.59 191058.62 190923.28
RanReal240_16 192596.39 201462.83 202285.47 204074.95 203816.48 203991.53 204054.99 189519.11  200135.28 200807.00 203668.49 203270.11 203649.04 203710.39
RanReal240_17 187556.75 194012.92 194388.66 195206.73 194840.79 195423.83 195561.36 186122.62 192037.08 192104.74 194950.57 194404.70 195241.19 195243.32
RanReal240.18 180830.22 193593.81 192869.78 194916.37 194915.62 195120.98 195100.39 179180.63 191159.08 191152.82 194704.23 194114.09 194967.73 194872.13
RanReal240.19 188396.09 196746.61 196285.24 199200.03 198828.82 199307.33 199225.98 186251.65 194628.91 195112.90 198905.05 198119.14 199093.86 199040.43
RanReal240.20 201830.01 210191.93 210396.12 212264.10 211984.80 212268.46 212268.52 199866.05 208860.59 208700.04 211871.74 211458.51 212037.43 212049.85
RanReal480_01 489977.75 545089.31 546703.95 554337.23 553224.53 555430.60 555489.92 483244.45 538552.42 540798.54 553795.85 552326.59 554994.68 554376.54
RanReal480.02 464078.50 500020.24 502865.44 510066.41 508711.62 510718.79 511280.50 460760.58 494706.50 497535.90 509058.46 507540.62 510304.78 509757.15
RanReal480.03 449196.02 486459.38 486913.79 496334.51 495140.23 497725.86 497295.19 446619.33 480858.95 482487.60 495409.98 493706.92 496785.80 496059.50
RanReal480.04 472680.46 512815.26 510347.72 521669.00 520653.34 522572.81 522305.16 468798.75 504488.99 505766.67 520051.55 519051.60 521952.28 521062.13
RanReal480.05 434381.50 471071.30 473774.42 483670.19 481803.95 483819.77 484084.66 428924.10 467096.07 469365.07 482390.51 480508.80 482603.84 482867.74
RanReal480.06 479994.22 523619.23 524093.48 533589.61 532702.72 534515.67 533991.27 476225.99 518672.22 519996.88 532462.25 531627.12 533916.00 533036.36
RanReal480.07 484189.08 535454.67 533884.71 545343.81 544445.60 545812.49 545470.73 477599.50 530962.69 531611.12 544060.83 542318.56 545302.82 544651.12
RanReal480.08 482171.91 521615.37 521459.15 531974.48 531287.92 532736.12 532417.42 477609.32 516060.40 517411.97 531023.25 529525.39 532109.62 531667.91
RanReal480.09 492676.73 546829.14 545707.17 555604.38 555163.27 556865.18 556868.85 481867.19 539150.61 541281.01 554820.43 553394.39 556081.91 555634.40
RanReal480_10 466084.48 508095.64 508999.35 519066.57 517431.34 520014.70 520257.54 461032.38 503102.84 504603.14 518412.32 516228.20 518024.16 518071.71
RanReal480_11 473865.90 517123.38 514661.24 523463.33 522626.50 524124.60 523991.29 467783.06 508603.89 510647.48 522201.99 521218.97 523508.02 522816.94
RanReal480.12 451806.42 493221.32 492811.38 501462.57 499914.17 502570.10 501915.56 448852.16  489093.31 488561.87 500055.30 498596.97 501632.20 500776.79
RanReal480_13 487797.57 527920.79 524454.74 534294.24 533672.27 535411.94 535025.51 482511.37 519991.80 520834.94 533478.80 532322.68 534651.24 533823.79
RanReal480_14 451992.66 503936.70 504472.18 513186.65 512764.33 514537.52 514107.62 444843.33  497303.47 499403.40 512501.71 511212.78 513935.11 513053.25
RanReal480_15 465846.65 509749.02 507379.12 516657.20 515607.47 518029.18 517205.02 461078.21 503685.19 502983.82 515416.17 514465.20 517189.00 516018.38
RanReal480.16 487514.16 540214.26 541062.43 549230.25 549033.57 549840.64 549552.63 483468.24 533478.98 536063.21 548274.66 547075.83 549253.54 548462.13
RanReal480.17 482452.36 530089.83 529061.73 537223.44 536402.45 537993.79 537924.55 476468.76  523792.28 523877.97 536149.06 534770.20 537568.15 536745.39
RanReal480_18 478578.77 518280.43 517080.81 525490.09 524631.54 526349.49 525822.76 474635.66 510154.88 510238.83 524515.11 522908.72 525453.50 524712.42
RanReal480_19 474559.35 512590.03 513182.29 522280.40 521672.59 522757.15 522316.22 469860.30 508273.65 509272.24 521442.89 519720.44 522218.13 521267.22
RanReal480_20 461494.13 508105.69 511126.25 518436.63 516488.64 518847.01 518349.10 457017.22 504721.35 505910.27 516935.15 515450.41 518202.52 517430.77
#Best 8 4 9 14 10 32 29 2 0 2 10 10 40 20
p-value 7.75e-11 7.75e-11 2.86e-9 1.25e-7 1.87e-9 0.88 1.54e-12 1.54e-12 1.54e-10 7.70e-8 2.54e-10 0.02




43

Table 12. Comparison between FITS and six state-of-the-art algorithms on the first two sets of CCP instances (RanReal and DB).

Devpest/Devavg (%) tavg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP4TS  IVNS GVNS SGVNS FITS
Sparse82_01 0.00/0.00 0.45/1.67 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 32.67 5.82 25.73 0.32 30.83 31.25 12.51
Sparse82_02 0.00/0.12 0.20/1.90 0.00/0.06 0.00/0.00  0.00/0.00  0.00/0.00  0.00/0.00 41.34 4.71 32.60 1.32 25.10 22.08 20.30
Sparse82_03 0.10/0.34 0.00/0.97 0.00/0.15 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 27.53 5.30 40.18 0.18 24.29 30.60 4.28
Sparse82_04 0.14/0.35 0.11/1.23 0.00/0.34 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 36.28 11.28 30.47 6.89 25.90 29.40 26.75
Sparse82_05 0.00/0.00 0.03/1.88 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 16.31 6.81 8.53 0.11 42.73 25.40 3.95
Sparse82_06 0.00/0.47 0.00/1.15 0.00/0.01 0.00/0.00  0.00/0.00  0.00/0.00  0.00/0.00 45.16 5.36 41.17 0.14 34.59 28.80 3.57
Sparse82_07 0.00/0.04 0.27/2.10 0.00/0.04 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 32.73 3.66 35.85 0.64 31.43 35.06 4.27
Sparse82_08 0.00/0.00 0.09/2.59 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.42 15.25 0.38 0.04 31.41 26.69 10.18
Sparse82_09 0.00/0.05 0.00/0.82 0.06/0.06 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 13.57 5.79 16.82 0.99 25.39 31.97 4.53
Sparse82_10 0.00/0.03 0.00/1.86 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 35.45 12.64 41.41 1.00 13.99 29.50 1.50
RanReal240_01 7.53/8.75 0.61/1.38 1.07/1.52 0.07/0.19  0.18/0.35  0.00/0.18  0.02/0.08 116.19 24.61 138.34 155.57 155.92 127.16 149.09
RanReal240.02 14.29/15.12  9.59/10.29 9.78/10.44 8.73/8.89 0.00/9.15 8.78/8.97 8.73/8.85 95.06 31.06 152.77 184.44 159.56 158.20 150.75
RanReal240.03 4.92/7.07 1.40/2.64 1.38/2.05 0.05/0.18 0.25/0.58 0.00/0.27 0.01/0.09 142.89 8.67 127.14 186.06 164.11 139.26 169.95
RanReal240.04 6.10/7.76 1.27/2.27 1.16/1.96 0.10/0.25 0.21/0.52 0.04/0.19 0.00/0.12 102.72 22.69 147.86 159.70 175.00 137.87 118.58
RanReal240.05 5.37/6.59 1.13/1.91 1.12/2.12 0.01/0.19 0.33/0.61 0.06/0.31 0.00/0.12 112.52 12.77 133.26 155.02 179.73 136.48 132.33
RanReal240_.06 5.49/6.98 1.01/1.65 0.90/1.60 0.02/0.18 0.17/0.41 0.08/0.27 0.00/0.12 113.64 34.23 146.87 174.51 187.59 126.61 155.99
RanReal240.07 4.80/5.57 0.68/1.36 0.79/1.44 0.04/0.15 0.09/0.47 0.02/0.23 0.00/0.13 98.82 48.81 171.68 160.67 195.33 144.35 144.96
RanReal240.08 6.66/8.10 0.69/1.68 1.22/1.96 0.00/0.20 0.24/0.54 0.11/0.35 0.00/0.14 114.33 20.45 137.72 145.94 193.88 122.79 124.22
RanReal240_.09 5.16/6.44 0.49/1.08 0.51/1.17 0.01/0.21 0.22/0.42 0.07/0.23 0.00/0.10 145.30 43.70 158.65 194.36 171.09 136.24 141.69
RanReal240_.10 6.84/7.44 1.39/2.44 1.55/2.25 0.05/0.20 0.33/0.58 0.02/0.25 0.00/0.09 112.01 12.19 129.47 183.49 145.39 162.77 134.20
RanReal240_11 6.18/6.80 0.65/1.53 1.05/1.61 0.04/0.17 0.16/0.40 0.04/0.18 0.00/0.08 122.37 65.47 161.82 157.98 155.12 136.25 129.91
RanReal240_.12 5.33/6.51 0.53/1.18 0.76/1.18 0.04/0.18 0.15/0.48 0.00/0.25 0.00/0.16 147.93 96.77 163.87 186.71 157.43 123.13 132.03
RanReal240-13 7.00/8.22 0.98/1.52 0.81/1.45 0.00/0.15 0.18/0.48 0.10/0.31 0.00/0.10 107.97 30.38 150.83 173.46 171.44 127.25 131.34
RanReal240_14 8.41/10.12 0.73/1.40 0.90/1.54 0.00/0.15 0.09/0.36 0.06/0.24 0.00/0.14 104.70 12.33 131.31 147.56 164.87 112.27 135.87
RanReal240_15 5.98/7.42 0.98/2.13 1.29/2.02 0.05/0.22 0.36/0.67 0.17/0.41 0.00/0.17 147.90 11.13 135.10 167.88 188.75 154.19 131.83
RanReal240_.16 5.62/7.13 1.28/1.93 0.88/1.60 0.00/0.20 0.13/0.39 0.07/0.21 0.01/0.18 134.19 20.82 153.67 165.22 181.82 130.93 89.11
RanReal240.17 4.09/4.83 0.79/1.80 0.60/1.77 0.18/0.31 0.37/0.59 0.06/0.31 0.00/0.16 97.91 31.38 146.50 171.75 179.25 149.06 171.03
RanReal240_18 7.31/8.16 0.77/2.02 1.14/2.02 0.09/0.20 0.09/0.51 0.04/0.20 0.00/0.12 134.95 20.60 133.33 154.60 169.52 167.15 152.83
RanReal240_.19 5.44/6.51 1.24/2.31 1.48/2.06 0.01/0.16 0.20/0.56 0.11/0.30 0.00/0.09 118.97 10.95 132.71 173.65 179.99 140.21 98.09
RanReal240_20 4.93/5.85 0.99/1.62 0.89/1.69 0.01/0.20 0.15/0.39 0.00/0.18 0.01/0.11 139.31 33.98 151.07 188.64 175.52 112.33 115.38
RanReal480.01 11.83/13.04 1.91/3.09 1.62/2.69 0.25/0.35 0.45/0.61 0.00/0.26 0.04/0.24 269.94 91.12 333.56 391.12 419.98 301.25 340.60
RanReal480.02 9.23/9.88 2.20/3.24 1.65/2.69 0.24/0.43 0.50/0.73 0.05/0.20 0.00/0.30 264.17 78.83 289.46 403.38 414.24 293.36 355.59
RanReal480.03 9.72/10.24 2.23/3.36 2.14/3.03 0.25/0.43 0.49/0.77 0.00/0.18 0.05/0.30 202.03 53.59 299.70 420.24 427.12 331.81 352.06
RanReal480_.04 9.54/10.28 1.86/3.45 2.33/3.21 0.17/0.48 0.36/0.67 0.00/0.21 0.04/0.28 221.32 93.30 302.04 383.19 428.09 332.13 399.51
RanReal480.05 10.27/11.39  2.69/3.51 2.13/3.04 0.09/0.35 0.47/0.74 0.10/0.24 0.00/0.25 235.49 57.96 288.63 417.55 448.15 325.05 335.84
RanReal480_.06 10.26/10.97 2.11/3.03 2.02/2.79 0.24/0.45 0.41/0.61 0.00/0.22 0.17/0.35 222.09 103.33 310.30 393.37 428.17 300.77 390.06
RanReal480.07 11.28/12.49 1.89/2.71 2.18/2.60 0.08/0.31 0.24/0.63 0.00/0.18 0.06/0.21 282.40 101.60 312.15 395.01 423.31 342.07 390.23
RanReal480_.08 9.56/10.42 2.16/3.20 2.19/2.95 0.22/0.40 0.35/0.68 0.00/0.21 0.14/0.28 239.63 88.35 328.43 388.45 398.32 356.39 380.64
RanReal480_.09 11.59/13.53 1.87/3.25 2.07/2.86 0.29/0.43 0.37/0.69 0.00/0.26 0.07/0.29 237.49 78.39 315.08 376.21 421.61 350.35 383.67
RanReal480_10 10.41/11.38 2.34/3.30 2.16/3.01 0.23/0.35 0.54/0.77 0.12/0.27 0.00/0.42 241.70 83.45 290.39 383.71 428.06 300.43 328.85
RanReal480_11 9.62/10.78 1.37/3.00 1.84/2.61 0.17/0.41 0.33/0.59 0.00/0.17 0.07/0.29 227.89 94.12 312.81 383.91 421.15 320.08 383.65
RanReal480_12 10.04/10.63 1.79/2.61 1.87/2.72 0.15/0.43 0.46/0.72 0.00/0.19 0.06/0.29 271.59 89.29 309.44 397.43 409.11 270.86 347.32
RanReal480_.13 8.87/9.86 1.37/2.85 2.02/2.70 0.18/0.33 0.30/0.55 0.00/0.18 0.05/0.27 208.64 138.35 313.17 404.23 390.76 327.70 330.84
RanReal480_14 12.10/13.49 2.00/3.29 1.89/2.88 0.20/0.33 0.28/0.58 0.00/0.18 0.02/0.23 276.22 73.53 311.36 405.04 419.87 319.14 352.07
RanReal480-15 9.99/10.91 1.51/2.68 1.97/2.82 0.18/0.42 0.38/0.60 0.00/0.17 0.07/0.30 235.52 118.86 319.34 384.96 418.77 313.91 387.02
RanReal480_16 11.34/12.08 1.76/2.98 1.60/2.51 0.12/0.29 0.15/0.51 0.00/0.14 0.06/0.26 227.75 104.65 322.10 345.11 419.82 301.16 392.78
RanReal480_17 10.32/11.43 1.46/2.63 1.65/2.62 0.14/0.33 0.29/0.59 0.00/0.18 0.00/0.22 229.01 109.71 287.42 386.16 411.52 320.59 360.93
RanReal480_.18 8.98/9.73 1.43/2.98 1.66/2.96 0.06/0.25 0.23/0.55 0.02/0.18 0.00/0.21 227.34 106.08 292.13 368.20 431.30 278.26 320.60
RanReal480_-19 9.20/10.10 1.92/2.75 1.81/2.55 0.07/0.23 0.18/0.55 0.00/0.17 0.06/0.26 249.78 75.37 303.77 400.78 435.58 306.80 380.69
RanReal480.20 11.03/11.90 2.05/2.70 1.46/2.47 0.05/0.34  0.43/0.63  0.00/0.19  0.07/0.25 201.47 124.30 344.80 385.30 420.08 339.09 353.52
Average 6.66/7.56 1.33/2.42 1.35/2.00 0.26,/0.40 0.22/0.63 0.20/0.36 0.19/0.33 149.25 50.68 187.26 224.24 243.04 187.33 201.35
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Table 13. Comparison of FITS with six state-of-the-art algorithms on the large CCP instances (RanReal960 and MDG).

Sfoest favg

Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP+TS IVNS GVNS SGVNS FITS
RanReal960.01.30 1160656.62 1293137.12 1295744.06 1331323.28 1331996.73 1337853.23 1333878.00 1151895.17 1283288.50 1290241.93 1329095.10 1328415.40 1335679.54 1332712.78
RanReal960.02.30 1216485.40 1389456.81 1392709.68 1426870.24 1427037.60 1433071.63 1434529.49 1202250.66 1384366.48 1388067.85 1423903.72 1422960.00 1430808.90 1433886.30
RanReal960.03.30 1189286.33 1351373.72 1357014.34 1390084.19 1390367.98 1395846.80 1392101.18 1182522.35 1344238.06 1351727.20 1387508.88 1386753.98 1394012.26 1390924.21
RanReal960.04.30 1219509.95 1370623.88 1371234.23 1407607.65 1406916.02 1413478.82 1414344.67 1212573.34 1362351.05 1368276.84 1405972.04 1403198.73 1410438.07 1412460.01
RanReal960.05.30 1188052.95 1325522.71 1329439.01 1363405.33 1362240.30 1370560.76 1365975.96 1182095.82 1319156.72 1324439.72 1360883.59 1359314.24 1367959.84 1365612.74
RanReal960.06.30 1182929.35 1376617.75 1381506.52 1413074.62 1410969.99 1417338.38 1413476.58 1176910.55 1369018.83 1377468.14 1409803.60 1408670.37 1415708.82 1412750.08
RanReal960.07.30 1137446.74 1300578.66 1298460.40 1332205.25 1332748.04 1339735.87 1334504.35 1129944.15 1294554.26 1295020.62 1329503.04 1329170.21 1337029.01 1334263.93
RanReal960-08.30 1257726.73 1425314.30 1429319.26 1462280.35 1460407.11 1466738.95 1463737.39 1245787.22 1416728.40 1424868.01 1458524.76 1457531.52 1464441.53 1462602.72
RanReal960.09.30 1208989.95 1337671.23 1346330.61 1378445.37 1380206.02 1385287.77 1381577.32 1198263.71 1331119.48 1339752.81 1376305.91 1374713.94 1382960.30 1379280.98
RanReal960.10.30 1177285.83 1343535.01 1343597.60 1377646.33 1377009.66 1384154.95 1379905.83 1166762.04 1338126.35 1339495.54 1374311.23 1373790.24 1381870.76 1378772.67
RanReal960.01.40 891572.56 1004227.73 1004270.26 1034548.05 1032872.42 1041148.42 1035642.67 886644.65 993064.32 998964.36 1031462.28 1030512.99 1038487.54 1034626.82
RanReal960.02.40 935401.94 1085305.47 1085823.96 1108588.66 1109086.02 1115789.54 1110547.59 928159.94 1077230.13 1080504.37 1106671.47 1106469.64 1113937.77 1110074.36
RanReal960.03.40 921042.44 1044295.09 1052879.25 1081509.08 1080281.13 1086488.77 1083240.15 915374.21  1038465.67 1048423.29 1079553.82 1077244.61 1085060.19 1082948.77
RanReal960.04.40 937109.10 1059684.54 1070116.28 1096347.39 1096438.26 1100866.71 1103897.12 933821.48 1056026.26 1061981.40 1092785.74 1091633.05 1098759.10 1101073.37
RanReal960.05.40 906482.91 1029269.47 1027437.77 1056103.80 1057478.73 1063682.56 1059158.09 903666.87 1022127.35 1022735.81 1054445.69 1054478.20 1062213.71 1058478.46
RanReal960.06.40 897340.52 1069823.35 1074709.94 1096895.36 1099861.44 1104590.22 1100368.74 895656.35 1064068.17 1069231.66 1095721.54 1093932.85 1102651.28 1100064.66
RanReal960-07.40 867071.23 1004440.73 1005791.58 1034299.55 1035241.97 1041064.58 1043376.95 863943.79  999659.95 1001132.07 1032667.93 1031362.33 1038879.34 1039933.23
RanReal960.08.40 966280.23 1102339.42 1110622.81 1137464.75 1136567.63 1142282.86 1139865.05 955984.19  1096241.59 1106224.45 1136002.24 1133556.70 1141171.70 1138054.46
RanReal960.09.40 924938.50 1036368.74 1042262.50 1068288.24 1068892.92 1076229.18 1072116.14 921990.58 1028766.23 1034766.78 1066496.30 1066427.06 1073798.91 1071426.07
RanReal960.10.40 904198.86 1035597.43 1049773.93 1069556.59 1069985.94 1077400.98 1072919.65 899148.57 1031513.70 1040754.01 1067889.46 1067548.97 1074400.36 1071480.21
RanReal960.01.60 619038.29 700687.54 701813.93 726465.37 725912.84 732096.63 727690.58 612713.55 695227.62 697743.35 724244.42 723156.84 730601.10 727222.73
RanReal960.02.60 647084.93 748934.65 746043.75 770060.90 770477.46 776289.95 773921.97 641266.62 738650.06 742288.71 768413.74 768062.71 775060.74 772572.49
RanReal960.03.60 632413.61 724699.78 726919.69 753090.65 753094.36 760248.25 756677.95 628405.90  720449.00 723759.32 751419.90 750898.37 758432.10 755442.64
RanReal960.04.60 645023.75 738689.79 739337.91 762952.42 763837.98 769112.25 765253.27 642799.40 730470.51 734819.23 761387.83 760835.94 767780.08 764696.30
RanReal960.05.60 630215.36 716742.73 719501.92 741248.79 741932.85 748581.43 743715.56 624979.06 709477.81 714588.65 739443.77 738830.28 746014.20 743165.17
RanReal960.06.60 622892.55 734541.49 738718.50 761947.94 762260.95 767679.61 763029.06 618513.44 727566.01 732184.86 760369.56 759048.94 765628.88 761957.51
RanReal960.07.60 600734.82 700703.94 701940.30 723439.86 723786.02 728827.33 725993.23 597456.58 693719.70 697375.56 721167.69 720360.15 727427.19 725733.17
RanReal960.08.60 664742.63 762712.02 763064.60 789552.19 787775.07 794363.93 791334.42 658736.52  754557.15 757767.15 786344.58 785553.15 792538.90 790285.98
RanReal960.09.60 638160.86 723165.49 721784.75 747509.96 746710.78 753943.93 750858.18 634848.33 715936.10 718335.78 745313.38 744341.99 751871.94 749209.83
RanReal960.10.60 618919.01 719787.60 724270.46 748812.21 747565.74 754666.01 749883.45 616548.20 715319.84 720345.30 746701.78 745004.51 752583.88 748985.05
MDG-a_21 315160.00 362695.00 374102.00 379241.00 388647.00 389269.00 383164.00 312644.80 360104.20 373209.70 376249.80 387189.20 389208.15 382387.05
MDG-a_22 317268.00 328093.00 371724.00 380665.00 384487.00 386354.00 380817.00 316499.40 325587.15 368874.70 377418.75 384018.35 386007.50 380489.60
MDG-a_23 317128.00 360151.00 369080.00 375697.00 386154.00 387267.00 380630.00 315288.70 359117.55 364125.35 374941.20 385489.20 387019.40 379334.85
MDG-a_24 312916.00 332128.00 372676.00 378258.00 387095.00 388423.00 381783.00 310704.15 326971.20 368878.30 376540.75 386473.15 388008.45 380560.55
MDG-a_25 320905.00 370090.00 382627.00 389242.00 387121.00 398108.00 390623.00 319286.50 368531.30 374075.45 384685.70 395749.55 397471.50 386346.05
MDG-a_26 320433.00 374776.00 386554.00 392407.00 396756.00 402135.00 393222.00 318889.70 372769.80 378871.70 389113.50 400015.60 401471.95 392916.10
MDG-a_27 312370.00 324348.00 356856.00 375566.00 380243.00 381896.00 377617.00 310857.55 322750.50 355431.50 373113.95 379248.65 381208.70 376721.60
MDG-a_28 314843.00 330349.00 372681.00 378486.00 386018.00 387594.00 380748.00 313527.20 328473.25 368721.65 375546.50 385207.20 387004.55 379732.95
MDG-a_29 311435.00 357683.00 363780.00 377175.00 382108.00 383937.00 378239.00 310036.20 356208.50 361418.90 372663.75 381301.50 383008.55 377540.40
MDG-a_30 320558.00 343222.00 381167.00 389615.00 394817.00 396678.00 389452.00 318338.05 338243.30 375183.25 386318.15 394281.50 396041.70 389254.10
MDG-a_31 313035.00 332137.00 372007.00 376920.00 384718.00 386587.00 379407.00 311684.20 328719.90 367440.60 374627.70 384018.25 385749.40 378922.70
MDG-a_32 318574.00 345815.00 369324.00 382405.00 391693.00 393098.00 383333.00 317281.50 336858.50 362748.20 379790.40 391004.60 392578.60 382737.35
MDG-a-33 315383.00 357377.00 368858.00 377689.00 382576.00 384291.00 379047.00 313647.90 356012.45 366607.00 373096.60 381876.80 383273.45 376641.80
MDG-a_34 318048.00  344939.00 372511.00 384412.00 393135.00 394676.00 386544.00 316882.65 336415.90 370375.60 381472.65 392409.55 394176.80 385459.25
MDG-a_35 319670.00 334549.00 379479.00 385251.00 393384.00 394687.00 386347.00 318614.15 331542.20 378821.80 383302.15 392174.20 394059.40 385302.60
MDG-a_36 323168.00 344521.00 382566.00 394867.00 400271.00 402087.00 396368.00 322207.50 340160.80 374720.45 389332.30 400019.40 401287.65 394103.05
MDG-a_37 315054.00 344145.00 369934.00 384811.00 387006.00 388411.00 386195.00 313427.95 339023.50 363213.40 380906.40 386276.45 387875.60 385797.30
MDG-a_38 324112.00 367162.00 380306.00 387472.00 394264.00 395865.00 388712.00 319654.20 361682.75 376996.50 384752.55 393879.15 395287.90 387807.15
MDG-a_39 317407.00 364448.00 372179.00 381738.00 390008.00 391415.00 385975.00 315434.25 363026.80 368562.90 378840.90 389147.50 391074.95 383036.10
MDG-a_40 324559.00 348432.00 390438.00 392751.00 403662.00 405184.00 396321.00 322889.20 344485.80 389367.10 391517.70 403108.90 405008.90 395505.80
#Best 0 0 0 0 0 46 4 0 0 0 0 0 46 4
p-value 1.54e-12 1.54e-12 1.54e-12 1.14e-11 0.09 2.86e-9 1.54e-12 1.54e-12 1.54e-12 1.54e-12 0.16 2.86e-9
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Table 14. Comparison between FITS and the six state-of-the-art algorithms on the large CCP instances (RanReal960 and MDG).

Devpest/Devavg (%) tavg
Name GRASP TS GRASP+TS IVNS GVNS SGVNS FITS GRASP TS GRASP4TS  IVNS GVNS SGVNS FITS
RanReal960-01.30 13.24/13.90 3.34/4.08 3.15/3.56 0.49/0.65 0.44/0.71 0.00/0.44 0.30/0.38 643.28 659.97 746.31 918.26 811.54 856.21 915.53
RanReal960.02.30 15.20/16.19  3.14/3.50 2.92/3.24 0.53/0.74  0.52/0.81  0.10/0.52  0.00/0.04 589.33 507.99 730.14 797.61 842.95 835.98 904.23
RanReal960.03.30 14.80/15.28 3.19/3.70 2.78/3.16 0.41/0.60 0.39/0.65 0.00/0.39 0.27/0.35 495.00 716.62 700.85 883.41 860.63 829.85 836.81
RanReal960.04.30 13.78/14.27 3.09/3.68 3.05/3.26 0.48/0.59 0.53/0.79 0.06/0.53 0.00/0.13 634.29 355.14 693.39 919.96 832.99 822.40 929.49
RanReal960.05.30 13.32/13.75  3.29/3.75 3.00/3.37 0.52/0.71 0.61/0.82 0.00/0.61 0.33/0.36 472.15 639.50 738.05 804.13 883.85 840.42 957.25
RanReal960.06.30 16.54/16.96 2.87/3.41 2.53/2.81 0.30/0.53  0.45/0.61  0.00/0.45  0.27/0.32 405.17 678.17 713.02 857.85 801.30 834.76 935.81
RanReal960.07.30 15.10/15.66 2.92/3.37 3.08/3.34 0.56/0.76 0.52/0.79 0.00/0.52 0.39/0.41 475.25 422.65 713.50 875.58 850.22 816.60 894.98
RanReal960.08.30 14.25/15.06 2.82/3.41 2.55/2.85 0.30/0.56 0.43/0.63 0.00/0.43 0.20/0.28 365.27 707.84 796.19 804.15 822.22 831.19 948.47
RanReal960.09.30 12.73/13.50 3.44/3.91 2.81/3.29 0.49/0.65 0.37/0.76 0.00/0.37 0.27/0.43 575.87 602.61 710.25 815.06 863.40 812.81 884.89
RanReal960.10.30 14.95/15.71 2.93/3.33 2.93/3.23 0.47/0.71 0.52/0.75 0.00/0.52 0.31/0.39 355.56 758.63 692.78 878.66 850.02 792.14 897.68
RanReal960.01.40 14.37/14.84 3.55/4.62 3.54/4.05 0.63/0.93  0.79/1.02  0.00/0.79  0.53/0.63 560.30 527.60 735.84 877.73 847.87 832.62 913.51
RanReal960.02.40 16.17/16.82 2.73/3.46 2.69/3.16 0.65/0.82 0.60/0.84 0.00/0.60 0.47/0.51 446.57 450.16 765.06 824.06 876.23 830.26 938.57
RanReal960.03.40 15.23/15.75 3.88/4.42 3.09/3.50 0.46/0.64 0.57/0.85 0.00/0.57 0.30/0.33 455.66 480.50 753.60 905.64 850.33 816.43 829.18
RanReal960.04.40 15.11/15.41 4.01/4.34 3.06/3.80 0.68/1.01 0.68/1.11 0.27/0.68 0.00/0.26 370.04 620.19 729.88 800.47 904.06 761.94 931.93
RanReal960.05.40 14.78/15.04 3.24/3.91 3.41/3.85 0.71/0.87  0.58/0.87  0.00/0.58  0.43/0.49 546.96 599.63 652.52 826.35 857.74 803.47 882.95
RanReal960.06.40 18.76/18.92 3.15/3.67 2.71/3.20 0.70/0.80 0.43/0.96 0.00/0.43 0.38/0.41 463.89 638.31 701.67 876.40 835.26 840.43 795.61
RanReal960.07.40 16.90/17.20 3.73/4.19 3.60/4.05 0.87/1.03 0.78/1.15 0.22/0.78 0.00/0.33 415.17 567.45 770.42 882.22 884.53 871.15 891.65
RanReal960.08.40 15.41/16.31 3.50/4.03 2.77/3.16 0.42/0.55 0.50/0.76 0.00/0.50 0.21/0.37 693.30 562.11 680.24 807.24 851.96 827.89 884.17
RanReal960.09.40 14.06/14.33 3.70/4.41 3.16/3.85 0.74/0.90 0.68/0.91 0.00/0.68 0.38/0.45 524.53 586.74 712.38 818.16 878.54 847.56 873.44
RanReal960.10.40 16.08/16.54 3.88/4.26 2.56/3.40 0.73/0.88 0.69/0.91 0.00/0.69 0.42/0.55 641.03 484.57 679.54 872.90 863.94 860.78 943.53
RanReal960.01.60 15.44/16.31 4.29/5.04 4.14/4.69 0.77/1.07 0.84/1.22 0.00/0.84 0.60/0.67 495.14 312.03 715.60 789.02 901.12 907.89 901.04
RanReal960.02.60 16.64/17.39 3.52/4.85 3.90/4.38 0.80/1.01 0.75/1.06 0.00/0.75 0.31/0.48 550.63 576.58 623.63 826.25 874.07 873.06 887.61
RanReal960.03.60 16.81/17.34 4.68/5.24 4.38/4.80 0.94/1.16 0.94/1.23 0.00/0.94 0.47/0.63 427.92 440.24 668.37 808.81 852.82 873.26 923.81
RanReal960.04.60 16.13/16.42 3.96/5.02 3.87/4.46 0.80/1.00  0.69/1.08  0.00/0.69  0.50/0.57 493.87 537.67 671.38 853.85 830.99 839.14 819.90
RanReal960.05.60 15.81/16.51 4.25/5.22 3.88/4.54 0.98/1.22 0.89/1.30 0.00/0.89 0.65/0.72 460.62 462.68 663.19 831.31 895.34 868.22 889.58
RanReal960.06.60 18.86/19.43 4.32/5.23 3.77/4.62 0.75/0.95 0.71/1.12 0.00/0.71 0.61/0.75 464.96 443.56 625.41 766.03 872.94 836.76 864.12
RanReal960.07.60 17.58/18.02 3.86/4.82 3.69/4.32 0.74/1.05 0.69/1.16 0.00/0.69 0.39/0.42 382.58 287.23 684.55 918.06 909.03 878.59 875.95
RanReal960.08.60 16.32/17.07 3.98/5.01 3.94/4.61 0.61/1.01  0.83/1.11  0.00/0.83  0.38/0.51 616.02 344.11 750.21 851.60 911.42 859.76 870.01
RanReal960.09.60 15.36/15.80 4.08/5.04 4.27/4.72 0.85/1.14 0.96/1.27 0.00/0.96 0.41/0.63 454.24 454.70 685.44 770.73 849.73 868.30 900.64
RanReal960.10.60 17.99/18.30 4.62/5.21 4.03/4.55 0.78/1.06 0.94/1.28 0.00/0.94 0.63/0.75 403.71 367.32 617.20 855.35 898.95 857.38 870.89
MDG-a_21 19.04/19.68 6.83/7.49 3.90/4.13 2.58/3.34 0.16/0.53 0.00/0.16 1.57/1.77 1113.87 1996.39 1997.42 1938.05 1518.30 1867.83 1872.28
MDG-a_22 17.88/18.08 15.08/15.73  3.79/4.52 1.47/2.31 0.48/0.60 0.00/0.48 1.43/1.52 1067.71 1999.48 1996.70 1840.87 1806.64 1801.35 1931.75
MDG-a_23 18.11/18.59  7.00/7.27 4.70/5.98 2.99/3.18 0.29/0.46 0.00/0.29 1.71/2.05 1082.92 1997.29 1997.69 1868.53 1741.74 1839.26 1937.18
MDG-a_24 19.44/20.01 14.49/15.82 4.05/5.03 2.62/3.06 0.34/0.50 0.00/0.34 1.71/2.02 911.13 1997.83 1996.65 1892.93 1697.71 1830.54 1903.31
MDG-a_25 19.39/19.80 7.04/7.43 3.89/6.04 2.23/3.37 2.76/0.59 0.00/2.76 1.88/2.95 1074.60 1996.68 1997.50 1829.42 1663.95 1870.12 1824.79
MDG-a-26 20.32/20.70 6.80/7.30 3.87/5.78 2.42/3.24 1.34/0.53 0.00/1.34 2.22/2.29 1149.10 1996.75 1997.02 1923.60 1665.89 1790.90 1926.98
MDG-a_27 18.21/18.60 15.07/15.49 6.56/6.93 1.66/2.30  0.43/0.69  0.00/0.43 1.12/1.35 854.07 1999.38  1998.81 1790.23  1635.81  1890.33  1837.59
MDG-a_28 18.77/19.11  14.77/15.25 3.85/4.87 2.35/3.11 0.41/0.62 0.00/0.41 1.77/2.03 924.16 1999.27 1997.85 1920.76 1681.61 1879.05 1733.96
MDG-a_29 18.88/19.25  6.84/7.22 5.25/5.87 1.76/2.94 0.48/0.69 0.00/0.48 1.48/1.67 1026.38 1996.99 1997.68 1903.37 1835.42 1859.38 1913.92
MDG-a-30 19.19/19.75 13.48/14.73 3.91/5.42 1.78/2.61 0.47/0.60 0.00/0.47 1.82/1.87 1028.09 1998.93 1998.08 1820.66 1692.74 1793.70 1867.39
MDG-a_31 19.03/19.38 14.08/14.97 3.77/4.95 2.50/3.09 0.48/0.66 0.00/0.48 1.86/1.98 1302.25 1998.60 1997.17 1912.22 1691.17 1789.28 1703.24
MDG-a_32 18.96/19.29 12.03/14.31 6.05/7.72 2.72/3.39 0.36/0.53 0.00/0.36 2.48/2.64 575.50 1998.49 1997.63 1888.87 1663.50 1853.43 1913.13
MDG-a_33 17.93/18.38 7.00/7.36 4.02/4.60 1.72/2.91 0.45/0.63 0.00/0.45 1.36/1.99 1160.48 1997.66 1997.26 1908.54 1816.25 1908.27 1960.62
MDG-a_34 19.42/19.71 12.60/14.76 5.62/6.16 2.60/3.35 0.39/0.57 0.00/0.39 2.06/2.34 630.93 1998.63 1996.86 1812.31 1759.61 1840.43 1820.16
MDG-a-35 19.01/19.27 15.24/16.00 3.85/4.02 2.39/2.88 0.33/0.64 0.00/0.33 2.11/2.38 1051.55 1998.13 1996.08 1810.68 1661.62 1797.99 1895.51
MDG-a_36 19.63/19.87 14.32/15.40 4.85/6.81 1.80/3.17 0.45/0.51 0.00/0.45 1.42/1.99 899.31 1998.23 1999.26 1838.15 1700.47 1842.45 1715.11
MDG-a_37 18.89/19.31 11.40/12.72 4.76/6.49 0.93/1.93 0.36/0.55 0.00/0.36 0.57/0.67 752.54 1997.55 1999.13 1851.54 1752.65 1833.76 1935.18
MDG-a_38 18.13/19.25  7.25/8.63 3.93/4.77 2.12/2.81 0.40/0.50 0.00/0.40 1.81/2.04 1105.56 1996.57 1997.76 1863.12 1769.98 1804.21 1909.01
MDG-a-39 18.91/19.41 6.89/7.25 4.91/5.84 2.47/3.21 0.36/0.58 0.00/0.36 1.39/2.14 1018.71 1997.23 1998.49 1901.77 1732.95 1887.26 1874.83
MDG-a_40 19.90/20.31  14.01/14.98  3.64/3.90 3.07/3.37  0.38/0.51  0.00/0.38  2.19/2.39 1097.38  1998.28  1997.11 1735.43  1770.49  1819.48  1864.35
Average 16.94/17.44 6.60/7.36 3.77/4.47 1.27/1.70 0.61/0.80 0.01/0.61 0.89/1.07 694.09 1115.02 1221.46 1251.36 1202.49 1240.53 1282.67
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Table 15. Comparison of FITS with the six state-of-art algorithms on handover minimization instances with n > 100, where the objective

is to minimize the total cost function.

Name GevPR-HMP GQAP BRKGA IVNS GVNS SGVNS FITS
fbest f(wg fbest fav_q fbest favg fbest fav_q fbest favg fb(:'st favg fbest frwg
100-15.270001  19174.00 19174.00 19000.00 19114.80 19000.00 19533.20 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00 19000.00
100-15.270002 22686.00 22686.00 22686.00 22805.60 23288.00 23478.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00 22686.00
100-15.270003 14558.00 14558.00 14558.00 14568.80 14616.00 14655.20 14558.00 14558.00 15184.00 15184.00 15184.00 15184.00 14558.00 14558.00
100-.15.270004 19762.00 19762.00 19700.00 19711.20 19882.00 20177.60 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00 19700.00
100-.15_-270005 22892.00 22892.00 22746.00 22885.20 23092.00 23430.80 22746.00 22746.00 22894.00 22894.00 22894.00 22894.00 22746.00 22746.00
100.25.270001 36412.00 36665.20 36448.00 36608.00 36752.00 37107.20 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00 36412.00
100-25-270002  39144.00 39199.20 38608.00 38677.20 39256.00 39515.60 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00 38608.00
100-25.270003  32966.00 33098.00 32686.00 32717.60 32708.00 33356.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00 32686.00
100.25.270004 35678.00 35801.20 35322.00 35433.20 35954.00 36068.40 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00 35322.00
100-25_.270005 36906.00 36911.20 36878.00 36968.00 37100.00 37363.60 36690.00 36690.00 37092.00 37092.00 37092.00 37092.00 36690.00 36690.00
100.50_.270001 60922.00 61074.00 61172.00 61234.80 61554.00 61845.20 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00 60922.00
100.50-270002  62046.00 62065.20 62022.00 62090.80 62524.00 62684.80 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00 62022.00
100.50-270003  54618.00 54707.60 54596.00 54661.60 55192.00 55390.80 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00 54596.00
100-50-270004 57894.00 57906.40 57894.00 57903.60 58208.00 58358.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00 57894.00
100.50_270005 61088.00 61283.20 61318.00 61318.00 62784.00 63042.00 61080.00 61092.00 61080.00 61102.10 61080.00 61080.00 61080.00 61240.10
200-15_270001 81558.00 81915.20 82834.00 84327.20 81558.00 81946.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00 81558.00
200-15-270002  89810.00 90949.60 90620.00 93462.00 90506.00 92372.40 89492.00 90407.40 89492.00 89863.60 89492.00 89725.20 89492.00 90201.50
200.15.270003 79232.00 79232.00 80980.00 81716.80 79548.00 79584.00 79232.00 79252.10 79232.00 79232.00 79232.00 79232.00 79232.00 79242.90
200-15-270004 78324.00 78324.00 80538.00 84737.60 80026.00 81019.20 78324.00 78549.10 78324.00 78376.10 78324.00 78324.00 78324.00 78376.10
200-15.270005 95998.00 96492.20 98826.00 100146.80 98830.00 99065.60 95680.00 96333.00 95734.00 95734.00 95734.00 95734.00 95680.00 96026.00
200-25_270001 133168.00 133674.00 138454.00 141961.60 140492.00 141938.80 133168.00 133168.00 133774.00 133774.00 133774.00 133774.00 133168.00 133168.00
200-25.270002 136038.00 137514.00 140066.00 141666.40 140690.00 141012.80 133778.00 133954.40 133876.00 133876.00 133876.00 133876.00 133778.00 133844.60
200.25.270003  139438.00 139962.40 144120.00 145647.60 143724.00 144409.60 136782.00 136801.50 136782.00 136802.70 136782.00 136792.50 136782.00 136870.10
200-25-270004  128554.00 129508.00 134054.00 136128.40 131786.00 133894.00 128246.00 128274.60 128472.00 128491.80 128472.00 128486.30 128246.00 128246.00
200.25.270005 148402.00 149298.80 154260.00 157307.20 152934.00 154275.20 147844.00 147844.00 148050.00 148050.00 148050.00  148050.00 147844.00 147844.00
200-50-270001  221550.00 221821.60 223096.00 223556.80 223098.00 224034.00 215388.00 215687.20 215388.00 215459.40 215388.00 215449.50 215388.00 215722.70
200.50-270002  218254.00 218761.20 219910.00 221346.80 219834.00 221131.20 212798.00 213005.10 213178.00 213251.80 213178.00 213239.50 212798.00 212946.20
200.50-270003  221500.00 222315.60 222404.00 223175.20 221110.00 221568.00 214364.00 214678.60 214364.00 214451.10 214364.00 214394.80 214364.00 214834.70
200-50-270004  212044.00 212626.80 212544.00 213880.80 213170.00 213509.20 206476.00 206985.40 207254.00 270343.60 207254.00 207301.70 206476.00 206692.90
200.50-270005 231890.00 232938.00 236136.00 238228.80 237156.00 237939.60 229918.00 230107.30 230484.00 230630.30 230484.00 230543.60 229900.00 229980.40
400-15_270001  372694.00 375429.20 456158.00 475012.00 375650.00 378718.00 369048.00 373670.80 369048.00 370847.20 369048.00 370787.50 369048.00 371752.40
400-15.270002 370274.00 373304.80 460232.00 465669.20 383096.00 386282.80 365878.00 370147.60 366062.00 369675.00 366062.00 368351.10 365878.00 369214.50
400-.15_270003  358684.00 360152.80 448830.00 456513.60 366314.00 369552.80 352588.00 358234.90 353078.00  355399.30 353078.00 355002.50 352588.00 354776.20
400.15.270004 334430.00 336826.40 406834.00 447753.20 346282.00 349110.00 331888.00 339014.80 331888.00 335504.80 331888.00 337685.30 331888.00 337899.40
400-15_270005 361904.00 365974.00 457274.00 476186.00 377094.00 380204.40 360422.00 364127.30 360714.00 364176.50 360714.00 362735.10 360422.00 362651.80
400.25.270001 570852.00 571930.00 663908.00 694715.60 579130.00 584584.80 545662.00 547000.40 545674.00 547537.20 545228.00 546479.10 545540.00 547541.30
400-25_270002  544568.00 547953.60 658440.00 679772.40 554840.00 560692.00 528470.00 530441.40 528470.00 530204.70 528470.00 529495.00 528470.00 529055.90
400.25_270003  548000.00 554179.60 667982.00 680754.80 553162.00 555433.20 525016.00 527990.20 525016.00 527434.30 525016.00 526789.10 524678.00 526193.40
400.25.270004 501750.00 504474.40 607672.00 633011.20 516416.00 517828.00 481660.00 482858.10 481920.00 482922.10 481994.00 483238.40 481436.00 481994.10
400-25_270005 556044.00 561315.20 679848.00  703440.00 585070.00  589444.00 548100.00 548744.40 548450.00 549737.80 548450.00 549170.50 548100.00 549106.70
40050270001 851412.00 854656.00 951882.00 957526.00 879438.00 881239.60 824868.00 825682.50 826252.00 826962.10 825956.00 826809.80 824656.00 825547.00
400.50_270002  845496.00 848217.60 949562.00 953687.60 874226.00 877662.00 822562.00 824563.50 824468.00  826207.90 823762.00 825441.00 822336.00 824048.70
40050270003  819242.00 824118.80 919140.00 927517.60 843242.00 850384.80 801722.00 802977.20 802936.00 804269.90 801824.00 803537.30 801472.00 802646.30
40050270004  774564.00 777953.60 878912.00 885893.20 806690.00 810186.80 760514.00 761484.60 760044.00 762079.10 760044.00 761455.70 760232.00 763379.60
400.50_270005 854726.00 857133.20 940358.00  950535.60 882060.00  885058.80 828398.00 829882.60 828902.00 829946.80 828450.00 829578.20 828398.00 830872.10
#Best 9 4 11 0 2 0 37 18 23 15 24 25 43 30
p-value 1.97e-9 1.68e-8 5.51e-9 1.97e- 5.47e-11 1.97e- 0.00 0.02 1.19e-5 0.08 7.44e-5 0.38
11 11
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Table 16. Comparison between FITS and six state-of-the-art algorithms on the handover minimization instances with n > 100.

Devpest/Devavg (%) tavg
Name GevPR- GQAP BRKGA IVNS GVNS SGVNS FITS IVNS GVNS SGVNS FITS
HMP

100-15_270001  0.92/0.92 0.00/0.60 0.00/2.81 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.03 0.24 0.28 3.84
100-15-270002  0.00/0.00 0.00/0.53 2.65/3.49 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.54 0.39 0.49 25.06
100-15-270003  0.00/0.00 0.00/0.07 0.40/0.67 0.00/0.00 4.30/4.30 4.30/4.30 0.00/0.00 0.08 0.06 0.10 0.14
100-15.270004 0.31/0.31  0.00/0.06 0.92/2.42  0.00/0.00  0.00/0.00  0.00/0.00  0.00/0.00 0.30 0.13 0.11 2.03
100-15-270005 0.64/0.64 0.00/0.61 1.52/3.01 0.00/0.00 0.65/0.65 0.65/0.65 0.00/0.00 1.62 0.24 0.36 11.35
100-25_270001  0.00/0.70 0.10/0.54 0.93/1.91 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.54 0.64 0.82 4.38
100-25.270002 1.39/1.53 0.00/0.18 1.68/2.35 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 1.62 1.33 0.66 5.57
100-25_270003 0.86/1.26 0.00/0.10 0.07/2.05 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 5.42 1.40 0.86 12.78
10025270004 1.01/1.36  0.00/0.31 1.79/2.11  0.00/0.00  0.00/0.00  0.00/0.00  0.00/0.00 6.18 0.13 0.21 19.05
100-25-270005 0.59/0.60 0.51/0.76 1.12/1.84 0.00/0.00 1.10/1.10 1.10/1.10 0.00/0.00 6.89 0.15 0.23 14.61
100-50-270001  0.00/0.25 0.41/0.51 1.04/1.52 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 9.19 0.45 0.48 25.75
100-50-270002  0.04/0.07 0.00/0.11 0.81/1.07 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 10.47 0.87 0.71 7.41
100-50-270003  0.04/0.20 0.00/0.12 1.09/1.46 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 7.61 0.68 0.59 8.70
100-50-270004  0.00/0.02 0.00/0.02 0.54/0.80 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 5.63 1.26 0.05 14.18
100-50-270005 0.01/0.33 0.39/0.39 2.79/3.21 0.00/0.02 0.00/0.04 0.00/0.00 0.00/0.26 9.45 1.42 0.43 42.71
200-15-270001  0.00/0.44 1.56/3.40 0.00/0.48 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 25.19 2.23 2.77 67.35
200-15-270002 0.36/1.63 1.26/4.44 1.13/3.22 0.00/1.02 0.00/0.42 0.00/0.26 0.00/0.79 70.30 20.16 55.81 116.10
200-15_270003  0.00/0.00 2.21/3.14 0.40/0.44 0.00/0.03 0.00/0.00 0.00/0.00 0.00/0.01 38.27 2.08 1.85 13.10
200-15_270004 0.00/0.00 2.83/8.19 2.17/3.44 0.00/0.29 0.00/0.07 0.00/0.00 0.00/0.07 48.99 13.94 20.44 43.07
200-15_270005 0.33/0.85 3.29/4.67 3.29/3.54 0.00/0.68 0.06/0.06 0.06/0.06 0.00/0.36 11.33 29.97 31.91 40.97
200-25.270001  0.00/0.38  3.97/6.60 5.50/6.59  0.00/0.00  0.46/0.46  0.46/0.46  0.00/0.00 41.78 24.60 54.73 83.74
200-25_270002 1.69/2.79 4.70/5.90 5.17/5.41 0.00/0.13 0.07/0.07 0.07/0.07 0.00/0.05 87.71 47.07 19.05 91.89
200-25_270003 1.94/2.33 5.36/6.48 5.08/5.58 0.00/0.01 0.00/21.95 0.00/0.01 0.00/0.06 53.89 86.94 51.56 103.30
200-25-270004 0.24/0.98 4.53/6.15 2.76/4.40 0.00/0.02 0.18/0.19 0.18/0.19 0.00/0.00 49.99 35.98 19.00 92.27
200-25_270005 0.38/0.98 4.34/6.40 3.44/4.35 0.00/0.00 0.14/0.14 0.14/0.14 0.00/0.00 9.64 6.86 5.17 78.63
200.50-270001  2.86/2.99  3.58/3.79 3.58/4.01  0.00/0.14  0.00/0.03  0.00/0.03  0.00/0.16 76.15 62.88 65.42 87.34
200-50-270002 2.56/2.80 3.34/4.02 3.31/3.92 0.00/0.10 0.18/0.21 0.18/0.21 0.00/0.07 69.51 25.08 14.92 105.89
200-50-270003  3.33/3.71 3.75/4.11 3.15/3.36 0.00/0.15 0.00/0.04 0.00/0.01 0.00/0.22 69.87 46.94 83.88 101.50
200-50-270004 2.70/2.98 2.94/3.59 3.24/3.41 0.00/0.25 0.38/30.93 0.38/0.40 0.00/0.11 81.66 64.90 55.80 111.74
200-50-270005 0.87/1.32 2.71/3.62 3.16/3.50 0.01/0.09 0.25/0.32 0.25/0.28 0.00/0.03 86.92 65.05 68.95 131.04
400-15_270001  0.99/1.73 23.60/28.71 1.79/2.62 0.00/1.25 0.00/0.49 0.00/0.47 0.00/0.73 184.94 114.10 154.72 218.52
400-15_270002  1.20/2.03 25.79/27.27 4.71/5.58 0.00/1.17 0.05/1.04 0.05/0.68 0.00/0.91 197.33 195.42 162.95 230.06
400-15.270003  1.73/2.15  27.30/29.48 3.89/4.81  0.00/1.60  0.14/0.80  0.14/0.68  0.00/0.62 156.99 73.55 125.33  253.96
400-15-270004 0.77/1.49 22.58/34.91 4.34/5.19 0.00/2.15 0.00/1.09 0.00/1.75 0.00/1.81 245.49 123.96 171.49 226.90
400-15_270005 0.41/1.54 26.87/32.12 4.63/5.49 0.00/1.03 0.08/1.04 0.08/0.64 0.00/0.62 234.97 136.54 243.64 271.41
400-25-270001  4.70/4.90 21.77/27.42 6.22/7.22 0.08/0.33 0.08/0.42 0.00/0.23 0.06/0.42 239.15 124.71 127.27 280.77
400-25_270002  3.05/3.69 24.59/28.63 4.99/6.10 0.00/0.37 0.00/0.33 0.00/0.19 0.00/0.11 206.04 109.35 114.10 263.82
40025270003  4.45/5.62  27.31/29.75 5.43/5.86  0.06/0.63  0.06/0.53  0.06/0.40  0.00/0.29 213.34 176.03 182.30 259.13
400-25_270004  4.22/4.79 26.22/31.48 7.27/7.56 0.05/0.30 0.10/0.31 0.12/0.37 0.00/0.12 209.56 108.17 142.02 274.96
400-25-270005 1.45/2.41 24.04/28.34 6.75/7.54 0.00/0.12 0.06/0.30 0.06/0.20 0.00/0.18 243.63 192.24 215.43 295.26
400-50-270001  3.24/3.64 15.43/16.11  6.64/6.86 0.03/0.12 0.19/0.28 0.16/0.26 0.00/0.11 260.81 214.55 244.55 255.22
400-50-270002 2.82/3.15 15.47/15.97 6.31/6.73 0.03/0.27 0.26/0.47 0.17/0.38 0.00/0.21 284.52 228.68 229.22 280.60
400-50-270003  2.22/2.83 14.68/15.73  5.21/6.10 0.03/0.19 0.18/0.35 0.04/0.26 0.00/0.15 302.17 197.58 258.58 267.40
400-50-270004 1.91/2.36 15.64/16.56  6.14/6.60 0.06/0.19 0.00/0.27 0.00/0.19 0.02/0.44 265.09 228.35 230.35 294.04
400-50-270005  3.18/3.47 13.52/14.74 6.48/6.84 0.00/0.18 0.06/0.19 0.01/0.14 0.00/0.30 267.93 210.97 249.88 284.11
Average 1.32/1.74 8.37/10.15 3.19/3.94 0.01/0.28 0.20/1.53 0.19/0.33 0.00/0.20 97.82 66.18 75.77 120.48




Table 17
Comparison between FITS and MA on two sets of CCP instances (RanReal and
DB).

Name FITS MA
Soest favg tavg (s) Fbest favg tavg(s)
Sparse82_01 1342.17 1342.17 7.70 1342.17 1342.17 9.81
Sparse82_02 1306.64 1306.64 15.92 1306.64 1306.64 14.24
Sparse82_03 1353.94 1353.94 3.88 1353.94 1353.94 4.86
Sparse82_04 1291.22 1291.22 45.02 1291.22 1291.22 43.75
Sparse82_05 1352.35 1352.35 1.13 1352.35 1352.35 1.26
Sparse82_06 1354.61 1354.61 1.63 1354.61 1354.61 1.92
Sparse82_07 1266.94 1266.94 4.13 1266.94 1266.94 4.42
Sparse82_08 1393.02 1393.02 3.59 1393.02 1393.02 3.36
Sparse82_09 1294.12 1294.12 2.75 1294.12 1294.12 2.60
Sparse82_10 1356.98 1356.98 0.89 1356.98 1356.98 0.99
RanReal240_01 225003.53 224926.96 2348.59 225003.53 224937.30 2348.57
RanReal240-02 204624.36 204525.77 1580.11 204624.36 204553.10 1948.50
RanReal240.03 198976.88 198941.44 1572.29 199079.37 198956.17 2276.32
RanReal240.04 225667.77 225542.39 1151.94 225683.17 225547.69 2524.26
RanReal240.05 195621.68 195480.29 1631.35 195621.68 195481.00 1943.62
RanReal240.06 216747.32 216697.36 1667.33 216747.39 216699.09 1945.37
RanReal240.07 209316.85 209245.15 1562.66 209305.70 209213.53 1642.42
RanReal240.08 205246.82 205175.77 1768.87 205246.82 205134.15 2146.29
RanReal240-09 209186.90 209145.93 2038.81 209186.90 209152.19 2123.53
RanReal240_.10 193062.60 192969.92 1856.91 193062.60 192972.14 1945.36
RanReal240-11 204722.75 204627.27 1975.32 204722.75 204635.30 1990.59
RanReal240_.12 201117.11 201022.63 1197.68 201117.11 201037.08 2295.96
RanReal240_.13 202338.43 202312.16 1218.02 202338.43 202312.50 1613.35
RanReal240-14 228870.89 228657.39 2027.09 228870.89 228601.66 1278.33
RanReal240_15 191263.28 191149.81 1653.79 191263.28 191177.81 2281.96
RanReal240_.16 204072.57 203960.10 1710.90 204081.46 203971.34 1986.64
RanReal240.17 195623.04 195532.19 1791.09 195638.95 195544.67 2031.51
RanReal240-18 195127.57 195035.21 1887.10 195167.12 195070.91 2355.17
RanReal240-19 199307.33 199191.03 1317.83 199307.33 199175.59 1848.30
RanReal240_20 212321.06 212234.67 1798.98 212322.48 212236.65 2139.52
RanReal480_01 556259.42 555579.98 3785.15 556401.65 555586.79 5465.92
RanReal480.02 511504.92 510798.1 4735.30 511832.51 511033.52 5928.92
RanReal480.03 497973.87 497377.76 4213.93 498197.75 497467.34 6199.20
RanReal480-04 523131.64 522494.45 4786.27 523428.57 522493.58 6273.48
RanReal480_.05 484701.85 483989.96 3463.80 484856.17 484089.84 5828.84
RanReal480-06 534897.14 534283.07 4402.99 535110.60 534324.91 5859.55
RanReal480.07 546052.12 545744.17 4340.06 546671.53 545774.12 5779.21
RanReal480.08 533042.97 532676.82 4098.46 533593.65 532710.69 5438.86
RanReal480_-09 557169.08 556629.74 4028.24 557558.00 556641.92 5221.96
RanReal480_10 520714.86 519959.24 3871.66 520657.09 519841.12 5395.04
RanReal480-11 524479.86 524065.89 4859.36 524356.65 524044.88 5087.50
RanReal480_.12 502547.16 502141.47 4282.61 502888.85 502143.97 5675.84
RanReal480_.13 535381.87 535028.27 3833.55 536024.76 535078.71 5648.80
RanReal480_.14 514731.74 514378.83 4568.84 515137.95 514415.58 5395.97
RanReal480-15 518140.43 517471.49 4449.48 518686.16 517480.73 5247.89
RanReal480-16 550260.76 549765.36 4074.76 550566.81 549796.27 5959.42
RanReal480_17 538339.63 537969.48 4540.85 538584.62 537997.22 5623.36
RanReal480_.18 526419.74 525880.41 4768.13 527089.59 526065.80 5575.99
RanReal480_-19 522972.89 522598.39 5210.14 523302.33 522624.73 5832.21
RanReal480-20 519148.25 518650.30 4097.54 519626.64 518717.70 6164.32
#Best 3 7 25 33
p-value 3.22e-5 3.94e-5
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Table 18

Comparison between FITS and MA on the large handover minimization instances
with n > 100. For direct comparisons, we present the results in the minimization
form.

Name FITS MA

frest frwg tavg (s) foest favg ta’ug(s)
100-15-270001 19000 19000.00 7.59 19000 19000.00 4.52
100-15-270002 22686 22686.00 143.84 22686 22686.00 70.77
100-15-270003 14558 14558.00 0.20 14558 14558.00 0.08
100-15_270004 19700 19700.00 3.34 19700 19700.00 0.84
100-15-270005 22746 22746.00 15.68 22746 22746.00 4.78
100-25-270001 36412 36412.00 5.73 36412 36412.00 2.53
100-25.270002 38608 38608.00 72.92 38608 38608.00 11.48
100-25-270003 32686 32686.00 84.02 32686 32686.00 28.65
100-25.270004 35322 35322.00 20.94 35322 35322.00 10.55
100-25-270005 36690 36690.00 9.81 36690 36690.00 6.19
100-50-270001 60922 60922.00 103.80 60922 60922.00 21.03
100.50-270002 62022 62022.00 42.17 62022 62022.00 8.20
100-50-270003 54596 54596.00 94.73 54596 54596.00 4.43
100-50-270004 57894 57894.00 121.33 57894 57894.00 55.42
100-50-270005 61080 61099.90 620.30 61080 61080.00 158.34
200-15-270001 81558 81558.00 544.44 81558 81558.00 348.50
200-15-270002 89492 90134.50 966.93 89492 89653.40 628.38
200-15-270003 79232 79232.00 165.95 79232 79232.00 56.59
200.15_270004 78324 78372.30 345.14 78324 78324.00 344.47
200-15-270005 95680 96023.90 398.99 95680 95680.00 115.01
200-25_270001 133168 133168.00 512.23 133168 133168.00 206.01
200-25-270002 133778 133818.20 742.93 133778 133829.00 686.27
200-25-270003 136782 136828.10 885.09 136782 136796.70 870.38
200-25_270004 128246 128246.00 1341.78 128246 128246.00 767.18
200-25-270005 147844 147844.00 132.42 147844 147844.00 189.92
200.50-270001 215388 215560.80 962.60 215388 215616.40 802.60
200-50-270002 212798 212848.70 731.01 212798 212858.40 1055.20
200-50-270003 214364 214555.20 1237.59 214364 214550.10 1333.02
200-50-270004 206476 206574.40 1097.72 206476 206595.90 797.46
200-50-270005 229900 229936.70 757.27 229900 229945.20 1044.29
400-15.270001 369048 371437.90 1659.67 369048 369317.60 1904.87
400-15-270002 365878 368928.70 2880.39 365878 366497.10 1558.38
400-15-270003 352588 353787.40 1394.43 352588 352600.70 1101.44
400-15-270004 331888 336731.60 1517.02 331888 332017.50 1631.73
400-15-270005 360422 361852.50 2456.41 360422 360949.90 2080.04
400-25.270001 545556 546421.40 2447.34 545540 546420.60 2447.35
400-25-270002 528470 528792.60 2686.55 528470 528862.50 2615.13
400-25_270003 524678 525339.10 2455.44 524678 525226.00 2204.49
400-25-270004 481436 481925.10 2715.72 481436 481974.50 2351.65
400-25-270005 548100 548123.60 2104.69 548100 548199.70 1808.02
400.50-270001 824604 825539.90 2749.00 824518 825488.10 3086.45
400-50-270002 822336 823753.30 3002.52 822336 823699.90 3006.55
400.50-270003 801432 802627.00 2814.66 801346 802484.30 3022.16
400-50-270004 760232 762474.40 3003.92 760232 761699.40 2924.69
400-50-270005 828398 829700.80 2739.78 828398 829226.00 3801.92

#Best 0 8 3 19
p-value 0.08 0.05
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Table 19
Comparison between FITS and its two underlying components FLS and InfLLS on
the RanReal benchmark set.

Name FITS FLS InfLLS
foest favg foest favg foest favg

RanReal240.01 224941.48 224802.06 224941.28 224700.99 224673.38 224351.31
RanReal240-02 204624.36 204359.38 204624.36 204273.94 204191.72 203800.45
RanReal240.03 198954.91 198799.84 198896.78 198715.24 198612.31 198358.12
RanReal240.04 225627.16 225364.97 225627.16 225242.26 225382.26 224953.72
RanReal240-05 195564.48 195320.28 195472.49 195298.72 195165.72 194470.36
RanReal240.06 216747.32 216487.02 216736.00 216422.13 216244.78 215840.77
RanReal240-07 209305.70 209029.23 209286.63 208984.08 208904.93 208538.21
RanReal240.08 205246.82 204961.05 205246.82 204971.43 204867.72 204447.79
RanReal240.09 209159.16 208952.48 209073.60 208877.53 208782.77 208445.36
RanReal240-10 192986.21 192811.13 193044.16 192762.94 192765.27 192429.05
RanReal240_.11 204722.75 204559.39 204722.75 204491.34 204458.26 204014.37
RanReal240-12 201117.11 200797.67 201074.54 200874.41 200687.09 200360.62
RanReal240.13 202335.99 202139.57 202335.99 202107.26 201879.46 201616.58
RanReal240_14 228870.89 228554.78 228844.44 228457.67 228316.81 227946.95
RanReal240.15 191255.87 190923.28 191202.77 190903.62 190761.09 190372.67
RanReal240_16 204054.99 203710.39 204019.08 203706.22 203513.73 203196.32
RanReal240-17 195561.36 195243.32 195447.87 195225.20 195223.74 194857.78
RanReal240_.18 195100.39 194872.13 195100.39 194864.12 194689.78 194398.32
RanReal240-19 199225.98 199040.43 199216.94 198997.54 199006.08 198450.68
RanReal240.20 212268.52 212049.85 212268.52 212015.41 211849.93 211537.55
RanReal480.01 555489.92 554376.54 555300.10 554228.16 552864.61 551299.72
RanReal480-02 511280.50 509757.15 510466.38 509449.52 509294.32 508336.14
RanReal480.03 497295.19 496059.50 496683.63 495938.74 495664.06 494292.73
RanReal480-04 522305.16 521062.13 522000.18 520565.30 520451.39 519325.61
RanReal480.05 484084.66 482867.74 483514.31 482241.30 481725.02 480777.24
RanReal480_06 533991.27 533036.36 533843.95 532409.06 531163.12 530249.35
RanReal480-07 545470.73 544651.12 545209.27 544128.41 542724.00 541454.69
RanReal480.08 532417.42 531667.91 532357.71 531527.82 529288.64 528038.04
RanReal480-09 556868.85 555634.40 556552.85 555295.47 554085.91 553165.52
RanReal480_.10 520257.54 518071.71 519857.07 518083.48 517835.50 516098.53
RanReal480_11 523991.29 522816.94 523587.47 522613.58 521964.67 520488.83
RanReal480_.12 501915.56 500776.79 501683.69 500647.73 500922.44 499723.69
RanReal480_13 535025.51 533823.79 534867.67 533594.29 531960.39 530949.44
RanReal480-14 514107.62 513053.25 514039.43 512915.41 512043.79 510844.33
RanReal480_.15 517205.02 516018.38 518140.43 515941.80 514508.48 513428.89
RanReal480-16 549552.63 548462.13 549824.00 548211.77 547509.72 546087.39
RanReal480.17 537924.55 536745.39 537702.09 536639.04 534980.65 533909.81
RanReal480_.18 525822.76 524712.42 525926.74 524565.69 523702.51 522359.71
RanReal480-19 522316.22 521267.22 522291.27 520957.84 520173.80 519077.31
RanReal480_20 518349.10 517430.77 518645.84 517467.88 515626.91 515025.41

#Best 35 36 12 4 0 0

p-value 6.23e-5 4.20e-7 2.54e-10 2.54e-10
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Table 20
Comparison between FITS and its variation FITS_FI (using the first-improvement
strategy) on the RanReal benchmark.

Name FITS FITS_FI
foest favg tavg foest favg tavg

RanReal240_01 224941.48 224802.06 149.09 224182.68 223791.06 97.10
RanReal240-02 204624.36 204359.38 150.75 204024.55 203748.76 115.86
RanReal240.03 198954.91 198799.84 169.95 198312.80 198070.31 107.81
RanReal240-04 225627.16 225364.97 118.58 224995.76 224412.34 116.39
RanReal240.05 195564.48 195320.28 132.33 195102.26 194867.72 117.86
RanReal240_06 216747.32 216487.02 155.99 215788.46 215440.78 99.28
RanReal240.07 209305.70 209029.23 144.96 208530.22 208114.22 96.03
RanReal240_08 205246.82 204961.05 124.22 204428.30 204277.73 108.99
RanReal240-09 209159.16 208952.48 141.69 208338.57 208175.46 116.96
RanReal240_10 192986.21 192811.13 134.20 192232.44 192071.19 120.39
RanReal240-11 204722.75 204559.39 129.91 204217.59 204001.29 89.54
RanReal240-12 201117.11 200797.67 132.03 200498.08 200344.22 78.75
RanReal240_13 202335.99 202139.57 131.34 201813.49 201615.62 69.13
RanReal240-14 228870.89 228554.78 135.87 228231.53 228117.87 92.49
RanReal240_.15 191255.87 190923.28 131.83 190537.12 190180.38 81.39
RanReal240-16 204054.99 203710.39 89.11 203428.14 203258.65 100.98
RanReal240_.17 195561.36 195243.32 171.03 194568.09 194356.29 64.85
RanReal240_18 195100.39 194872.13 152.83 194458.12 194254.79 89.27
RanReal240-19 199225.98 199040.43 98.09 198479.56 198337.34 102.39
RanReal240_20 212268.52 212049.85 115.38 211474.47 211194.85 66.20
RanReal480-01 555489.92 554376.54 340.60 551254.15 550147.26 236.79
RanReal480.02 511280.50 509757.15 355.59 507215.91 506193.99 251.43
RanReal480-03 497295.19 496059.50 352.06 494017.02 493425.88 251.20
RanReal480-04 522305.16 521062.13 399.51 516643.64 515925.45 112.97
RanReal480.05 484084.66 482867.74 335.84 480982.54 480210.46 240.39
RanReal480-06 533991.27 533036.36 390.06 530142.87 529021.63 230.79
RanReal480_07 545470.73 544651.12 390.23 541115.04 539994.76 258.65
RanReal480-08 532417.42 531667.91 380.64 529566.14 527736.78 223.86
RanReal480-09 556868.85 555634.40 383.67 551863.24 551045.16 204.35
RanReal480_10 520257.54 518071.71 328.85 517484.26 515898.39 272.95
RanReal480-11 523991.29 522816.94 383.65 520367.63 519570.84 204.96
RanReal480_.12 501915.56 500776.79 347.32 498568.75 498030.75 227.79
RanReal480-13 535025.51 533823.79 330.84 530707.31 529726.48 147.77
RanReal480_.14 514107.62 513053.25 352.07 510789.76 509613.70 252.60
RanReal480_15 517205.02 516018.38 387.02 514108.83 513515.25 195.55
RanReal480-16 549552.63 548462.13 392.78 543160.92 542154.24 252.46
RanReald480_17 537924.55 536745.39 360.93 533616.73 532759.09 254.00
RanReal480-18 525822.76 524712.42 320.60 521450.47 520006.79 108.58
RanReal480_-19 522316.22 521267.22 380.69 518719.33 517865.80 214.04
RanReal480-20 518349.10 517430.77 353.52 514528.29 514097.85 224.97

#Best 40 40 0 0

p-value 2.54e-10 2.54e-10
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Table 21
Comparison of two MA versions using uniform and cluster-based crossover respec-
tively on the RanReal benchmark.

Name Uniform CX Cluster-based CX

frest favg tavg (s) foest favg tavg(s)
RanReal240.01 224921.21 224821.36 1295.14 225003.53 224937.30 2348.57
RanReal240.02 204624.36 204493.54 1952.30 204624.36 204553.10 1948.50
RanReal240.03 198981.64 198893.17 1943.37 199079.37 198956.17 2276.32
RanReal240.04 225566.15 225454.43 1480.25 225683.17 225547.69 2524.26
RanReal240.05 195533.32 195428.43 1598.60 195621.68 195481.00 1943.62
RanReal240.06 216747.32 216618.54 1889.24 216747.39 216699.09 1945.37
RanReal240.07 209288.75 209194.38 1710.89 209305.70 209213.53 1642.42
RanReal240.08 205246.82 205108.07 1645.73 205246.82 205134.15 2146.29
RanReal240_-09 209186.90 209094.98 1974.60 209186.90 209152.19 2123.53
RanReal240-10 192986.21 192903.33 2459.53 193062.60 192972.14 1945.36
RanReal240-11 204680.80 204587.50 1672.03 204722.75 204635.30 1990.59
RanReal240_12 201117.11 200944.04 1924.83 201117.11 201037.08 2295.96
RanReal240.13 202338.43 202281.95 1813.21 202338.43 202312.50 1613.35
RanReal240-14 228646.52 228555.05 1560.60 228870.89 228601.66 1278.33
RanReal240_.15 191230.33 191094.96 1835.09 191263.28 191177.81 2281.96
RanReal240_.16 203909.40 203808.95 1537.05 204081.46 203971.34 1986.64
RanReal240_17 195638.95 195464.27 1929.86 195638.95 195544.67 2031.51
RanReal240.18 195100.39 194968.12 1876.05 195167.12 195070.91 2355.17
RanReal240_19 199307.33 199162.91 1660.33 199307.33 199175.59 1848.30
RanReal240-20 212268.52 212159.63 1373.99 212322.48 212236.65 2139.52
RanReal480.01 555377.78 554896.75 3868.70 556401.65 555586.79 5465.92
RanReal480.02 511021.69 510398.02 4410.56 511832.51 511033.52 5928.92
RanReal480.03 497675.92 496992.13 4234.89 498197.75 497467.34 6199.20
RanReal480_04 522425.81 521851.94 3692.03 523428.57 522493.58 6273.48
RanReal480.05 484496.11 483529.47 3896.52 484856.17 484089.84 5828.84
RanReal480_.06 534140.09 533526.58 4560.41 535110.60 534324.91 5859.55
RanReal480_07 545781.35 545111.15 4012.66 546671.53 545774.12 5779.21
RanReal480_.08 532566.57 532224.38 3723.32 533593.65 532710.69 5438.86
RanReal480_09 556523.87 556084.63 4458.78 557558.00 556641.92 5221.96
RanReal480-10 520148.06 519300.68 4485.14 520657.09 519841.12 5395.04
RanReal480_11 524676.35 523771.15 3951.08 524356.65 524044.88 5087.50
RanReal480_12 502329.51 501725.88 4251.32 502888.85 502143.97 5675.84
RanReal480-13 535017.14 534562.12 4163.93 536024.76 535078.71 5648.80
RanReal480_14 514814.34 514085.50 4657.32 515137.95 514415.58 5395.97
RanReal480_.15 517835.64 517051.95 4075.11 518686.16 517480.73 5247.89
RanReal480-16 550021.73 549159.13 3883.47 550566.81 549796.27 5959.42
RanReal480-17 538667.77 537830.76 3244.27 538584.62 537997.22 5623.36
RanReal480-18 526142.15 525543.15 4510.03 527089.59 526065.80 5575.99
RanReal480-19 522705.19 521971.51 3469.05 523302.33 522624.73 5832.21
RanReal480_20 518857.89 518260.21 3271.27 519626.64 518717.70 6164.32

#Best 2 0 31 40
p-value 4.46e-7 2.54e-10
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Table 22
Computational results on small handover minimization instances. For direct com-
parison, the results are converted into the minimization form.

Name FITS
frest fuvg ta'ug(s)
205270001 540 540.00 0.00
205270002 54 54.00 0.00
20.5.270003 816 816.00 0.00
20.5.270004 126 126.00 0.00
205270005 372 372.00 0.00
20-10-270001 2148 2148.00 0.00
20-10-270002 1426 1426.00 0.00
20-10-270003 2458 2458.00 0.00
20-10-270004 1570 1570.00 0.00
30.5.270001 772 772.00 0.00
30-5-270002 136 136.00 0.00
30-5-270003 920 920.00 0.01
30-5-270004 52 52.00 0.00
30-5-270005 410 410.00 0.01
30-10-270001 3276 3276.00 0.00
30-10-270002 1404 1404.00 0.00
30-10-270003 2214 2214.00 0.00
30-10-270004 2150 2150.00 0.02
30-10-270005 2540 2540.00 0.04
30-15-270001 6178 6178.00 0.01
30-15-270002 4042 4042.00 0.00
30-15_270003 4126 4126.00 0.00
30-15-270004 3920 3920.00 0.01
40.5-270001 610 610.00 0.07
40.5-270002 136 136.00 0.05
40.5-270003 234 234.00 0.12
40.5_270004 232 232.00 1.30
40.5_270005 774 774.00 0.00
40-.10-270001 4544 4544.00 0.08
40-10-270002 2068 2068.00 0.00
40-10-270003 2090 2090.00 0.01
40-10-270004 1650 1650.00 0.00
40-10-270005 4316 4316.00 0.01
40.15.270001 8646 8646.00 0.24
40-15-270002 4586 4586.00 0.26
40-15_270003 5396 5396.00 0.02
40-15-270004 4800 4800.00 0.00
40-15_270005 6272 6272.00 0.05
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